Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur

Curriculum and Structure

for

Electronics Engineering (Under Graduate Programme) From Academic Year 2019-2020

Kolhapur Institute of Technology's

College of Engineering (Autonomous), Kolhapur Teaching and Evaluation scheme for

Second Year B.Tech. Program in Electronics Engineering Semester-III

Course	Curriculum	Course	Te	ach	ing	scheme	Evalu	ation Sc	heme	
Code	component		L	Τ	P	Cre-	Scheme		larks	
						dits		Max	M	in
							ISE-I	10		
UELN0301	BS	Engineering	3	1	_	4	MSE	30		40
OELN0301	05	Maths-III	5	1	-	4	ISE-II	10		40
							ESE	50	20	
UELN0302							ISE-I	10		
	PC	Electronic Devices	3	-	-	3	MSE	30		40
		and Circuits					ISE-II	10	• •	
							ESE	50	20	
							ISE-I	10		
UELN0303	PC	Digital Design	3			3	MSE	30		40
		using HDL	3	-	-	5	ISE-II ESE	10	20	-
							ISE-I	50 50	20	
							MSE	30		
UELN0304	PC	Network Analysis	3	1	-	4	ISE-II	10		40
		5	-				ESE	50	20	
		Electronic					ISE-I	10		
LIEL NO205	PC	Measurement and	3			3	MSE	30		10
UELN0305	PC	Instrumentation	3	-	-	3	ISE-II	10		40
							ESE	50	20	
UELN0361	Audit-I	Environmental Studies	2	-	-	-	-	100	40	40
UELN0331		Electronic Devices					ISE	50	20	
OLLINUJJI	PC	and Circuits LAB	-	-	2	1	ESE (POE)	50	20	0
UELN0332	РС	Electronic Measurement and Instrumentation LAB	-	-	2	1	ISE	50	20	
UELN0333	PC	Digital Design	_	_	2	1	ISE	50	20	0
	10	using HDL LAB			-	1	ESE(POE)	50	20	
UELN0334	PC	Computer Aided			2	1	ISE	50	2	
		Design LAB	-	-	2	1	ESE(POE)	50	20	0
UELN0351	PRJ	Micro project- I LAB	-	-	2	1	ISE	50	20	0
Total				2	10	22	-	900 (+100 Audit)	360(Auc	

Total Credits: 22 Total Contact Hours/Week: 29Hrs

Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur Teaching and Evaluation scheme for

Second Year B.Tech. Program in Electronics Engineering Semester-IV Curricu- Course Teaching scheme Evaluation Scheme											
	Course			<u> </u>							
1		L	I	r			Scheme			s Min	
compo-					ults		ISE I				
	Linear Integrated									40	
PC		3	-	-	3						
	Circuits								20	-	
									20	40	
										40	
PC		4	-	-	4						
	Design								20		
						1				40	
DC	Control System	n			2		MSE	30			
PC	-	3	-	-	3		ISE-II	10			
	Engineering						ESE	50	20		
							ISE-I	10		40	
PC		3	_	_	3						
10	Communication	5			5						
						$\left \right $			20		
PC		3	1	-	4					40	
	Systems								20	-	
	a a .:					+	ESE	50	20		
A 1'4											
		2	-	-	-		ESE	100	40	40	
-11											
						+	ICE	50			
PC	e e	-	-	2	1					20	
						-	× /			20	
PC		-	-	2	1					20	
	6			_			· ,			20	
								50	2	20	
PC		-	-	2	1			50	2	20	
	LAB						(POE)	20	-		
	Control System										
PC		-	-	2	1		ISE	50	2	20	
									_		
1 qq	Micro project-II			2	1						
1 10,5	LAB	-	-		1		ISE	50	50 20		
		16						900		60	
			-	(+100	(+40	Audit)					
		2						Audit)			
	Curricu- lum compo- PC PC PC PC PC PC Audit -II PC PC PC PC PC PC	Curriculum compo-CoursePCLinear Integrated CircuitsPCAnalog Circuit DesignPCControl System EngineeringPCControl System Signals & SystemsPCSignals & SystemsPCSignals & Content Creation using Informa- tion and web TechnologiesPCLinear Integrated Circuits LABPCAnalog Circuit Design LABPCControl System Engineering Linear Integrated Circuits LABPCContent Creation using Informa- tion and web TechnologiesPCContent Creation Using Informa- tion and web TechnologiesPCContent Creation using Informa- tion and web TechnologiesPCControl System Engineering LABPCMicro project-II LABPRJMicro project-II LAB	Curriculum compo-Course Tea LPCLinear Integrated Circuits3PCAnalog Circuit Design4PCControl System Engineering3PCControl System Engineering3PCSignals & Systems3PCSignals & Systems3PCSignals & Content Creation using Informa- tion and web Technologies2PCLinear Integrated Circuits LAB-PCAnalog Circuit Design LAB-PCAnalog Circuit Design LAB-PCControl System Engineering LAB-PCMalog Circuit Design LAB-PCMalog Circuit Design LAB-PCMalog Circuit Design LAB-PCAnalog Engineering LAB-PCMicro project-II LAB-PRJMicro project-II LAB-	Curriculum compo-Course CourseTeachi IPCLinear Integrated Circuits3-PCAnalog Circuit Design4-PCAnalog Circuit Design3-PCControl System Engineering3-PCControl System Systems3-PCSignals & Systems31PCSignals & Systems31PCSignals & Systems31PCLinear Integrated Circuits LAB2-PCLinear Integrated Circuits LABPCAnalog Circuit Design LABPCControl System Engineering LABPCMicro project-II LABPRJMicro project-II LAB	Curricu- lum compo-Course ITeaching sec IPCLinear Integrated Circuits3-PCAnalog Circuit Design4-PCAnalog Circuit Design3-PCControl System Engineering3-PCControl System Engineering3-PCSignals & Systems31PCSignals & Systems31PCSignals & Systems31PCLinear Integrated Circuits LAB-2PCAnalog Circuit Design LAB-2PCAnalog Design LAB-2PCAnalog Design LAB-2PCAnalog Design LAB-2PCAnalog Design LAB-2PCAnalog Design LAB-2PCAnalog Design LABPCAnalog Design LABPCAnalog Design LABPCAnalog Design LABPCAnalog Design LABPCAn	Curricu- lum compo-CourseTeachurg scheme IPCLinear Integrated Circuits33PCAnalog Circuit Design44PCAnalog Circuit Design44PCControl System Engineering33PCControl System Engineering33PCSignals & Systems31-4Audit - IIContent Creation using Informa- tion and web Technologies2PCLinear Integrated Circuits LAB21PCAnalog Circuit Design LAB21PCControl System Engineering LAB21PCMalog Circuit Design LAB21PCMicro project-II LAB21PRJMicro project-II LAB21	Curricu- lum compo-Course CourseTeaching scheme ITPCre- ditsPCLinear Integrated Circuits33PCAnalog Circuit Design44PCControl System Engineering33PCControl System Engineering33PCSignals & Systems31-4PCSignals & Systems31-4PCSignals & Content Creation using Informa- tion and web Technologies2PCLinear Integrated Circuits LAB-21PCAnalog Circuit Design LAB-21PCControl System LAB21PCMalog Circuit LAB21PCMalog Circuit LAB21PCMalog Circuit LAB21PRJMicro project-II LAB21PRJMicro project-II LAB21	Curriculum compo-Course LTeaching scheme TEval SchemePCLinear Integrated Circuits33PCLinear Integrated Circuits33PCAnalog Circuit Design44PCAnalog Circuit Design44PCControl System Engineering33PCControl System Engineering33PCAnalog Communication33PCSignals & Systems31-4PCSignals & Systems31-4PCSignals & Communication2PCSignals & Systems31-4PCSignals & Control Circuits LAB21PCAnalog Communication21PCControl System Design LAB21PCControl System LAB21PCControl System LAB21PCControl System LAB21PCControl System LAB21PCControl System LAB21PRJMicro project-II LAB21PCControl System <td>Curriculum compo-CourseTeaching scheme IEvaluation SPCLinear Integrated Circuits33Scheme\overline{Max}PCLinear Integrated Circuits33$\overline{ISE-I}$10PCAnalog Circuit Design44$\overline{ISE-I}$10PCControl System Engineering33$\overline{ISE-II}$10PCControl System Engineering33$\overline{ISE-II}$10PCSignals & Systems33$\overline{ISE-III}$10PCSignals & Systems31-4$\overline{ISE-III}$10PCSignals & Communication33$\overline{ISE-III}$10PCSignals & Content Creation Using Informa- tion and web Technologies31-4$\overline{ISE-III}$10PCLinear Integrated Circuits LAB21\overline{ISE}50\overline{ISE}50PCAnalog Communication21$\overline{ISE}$$\overline{IOO}$$\overline{ISE}$$\overline{IOO}$PCAnalog Control System LAB21$\overline{ISE}$$\overline{IOO}$PCControl System LAB21$\overline{ISE}$$\overline{IOO}$PCMicro project-II LAB21$\overline{ISE}$$\overline{IOO}$PRJMicr</br></td> <td>Course Image: Course Image: Compo-Teaching scheme Image: CourseEvaluation Scheme MaxPCLinear Integrated Circuits33ISE-I10PCAnalog Circuit Design44ISE-I10PCAnalog Circuit Design44ISE-I10PCAnalog Circuit Engineering44ISE-II10PCControl System Engineering33ISE-II10PCAnalog Communication33ISE-II10PCSignals & Systems31-4ISE-II10PCSignals & Control Creation using Informa- tion and web Technologies23PCContent Creation Design LAB221PCControl System Technologies221PCControl System Technologies21ISE502PCControl System LAB21ISE502PCControl System LAB21ISE502PCControl System LAB21ISE502PCMicro project-II LAB21ISE502</td>	Curriculum compo-CourseTeaching scheme IEvaluation SPCLinear Integrated Circuits33Scheme \overline{Max} PCLinear Integrated Circuits33 $\overline{ISE-I}$ 10PCAnalog Circuit 	Course Image: Course Image: Compo-Teaching scheme Image: CourseEvaluation Scheme MaxPCLinear Integrated Circuits33ISE-I10PCAnalog Circuit Design44ISE-I10PCAnalog Circuit Design44ISE-I10PCAnalog Circuit Engineering44ISE-II10PCControl System Engineering33ISE-II10PCAnalog Communication33ISE-II10PCSignals & Systems31-4ISE-II10PCSignals & Control Creation using Informa- tion and web Technologies23PCContent Creation Design LAB221PCControl System Technologies221PCControl System Technologies21ISE502PCControl System LAB21ISE502PCControl System LAB21ISE502PCControl System LAB21ISE502PCMicro project-II LAB21ISE502	

Second Year B.Tech. Program in Electronics Engineering Semester-IV

Total Credits: 22 Total Contact Hours/Week: 29 Hrs

Note:

- ESE: End Semester Examination, MSE: Mid Semester Examination, ISE: In Semester Evaluation.
- HS: Humanities, Social science and Management, BS: Basic sciences including mathematics
- ES: Engineering Science, PC: Professional Core, PE: Professional Elective
- **OEL:** Open elective, **PRJ**: Project work, Seminar, Internship in industry etc.
- ** :Course code for Open Elective
- XX : Course code for Professional Elective
- \$\$: Course code for Audit Course

List of Audit Courses

Year	Course Code	Audit Course	Audit Course
Second Year B.Tech-I	UELN0361	Audit Course-I	Environmental Studies
Second Year B.Tech-II	UELN0461	Audit Course-II	Content Creation using Information and web Technologies

Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur Teaching and Evaluation scheme for Third Year B.Tech. Program in Electronics Engineering Semester-V

T	1 mra ye	ar B.Tech. Program							. 1	
	~ •	6		_		scheme	Evaluation SchemeSchemeWeightage			
	Curricu-	Course		Т	Р	Cre-	Scheme			
Code	lum					dits		Max	Mi	n
							ISE-I	10		
UELN0501	PC	Electromagnetic	3	1	_	4	MSE	30	-	40
OLLINUJUI	10	Engineering		1			ISE-II	10		
							ESE	50	20	
							ISE-I	10		
		Digital					MSE	30	-	10
UELN0502	PC	Communication	3	-	-	3	ISE-II	10		40
							ESE	50	20	
							ISE-I	10		
LIEL NIOSO2	DC	Power Electronics					MSE	30	-	40
UELN0503	PC		3	-	-	3	ISE-II	10		40
							ESE	50	20	
							ISE-I	10		
UELN0504	PC	Microcontrollers					MSE	30	-	40
OLLIN0304	IC	Whenocontrollers	4	-	-	4	ISE-II	10		40
							ESE	50	20	
							ISE-I	10		
UELN05XX	PE	Professional	3			3	MSE	30	-	40
UELINUSAA	PE	Elective-I	3	-	-	3	ISE-II	10		40
							ESE	50	20	
UELN0561	Audit-III	Industry 4.0	2	-	-	-	ESE	100	40	40
UELN0531		Digital					ISE	50	20)
UELIN0331	PC	Communication LAB	-	-	2	1	ESE(OE)	50	20)
		Power Electronics					ISE	50	20)
UELN0532	PC	LAB	-	-	2	1	ESE(POE)	50	20)
LIELNIO522	DC	Microcontroller			2	1	ISE	50	20)
UELN0533	PC	LAB	-	-	2	1	ESE(POE)	50	20)
UELN05XX	PE	Professional PE Elective-I LAB		-	2	1	ISE	50	20)
UELN0551	PRJ	Micro project-III LAB	-	-	2	1	ISE	50	20)
	Tot	al	16				-	900	36	0
l i i i i i i i i i i i i i i i i i i i			16+	1	10	22		(+100	(+40 A)	udit)
			2	-	-			(-00	(10 11	

Total Credits: 22 Total Contact Hours/Week: 29Hrs

Kolhapur Institute of Technology's **College of Engineering (Autonomous), Kolhapur** Teaching and Evaluation scheme for Third Year B.Tech. Program in Electronics Engineering Semester-VI (Third Year B.Tech-II)

	1	(Third					1			
Course	Curriculum					scheme			n Schen	
Code	component	Course	L	T	P	Cre-	Scheme		Weight	
						dits		Ma]	Min
		Computer					ISE-I	10		
	PC	Architecture and	4			4	MSE	30	-	40
UELN0601	PC	Operating	4	-	-	4	ISE-II	10		
		System					ESE	50	20	
							ISE-I	10		40
	DC	Digital Signal					MSE	30	-	
UELN0602	PC	Processing	3	-	-	3	ISE-II	10		
							ESE	50	20	
							ISE-I	10		40
UELN0603	PC	Data Structures	3	-	_	3	MSE	30	-	
OLLIN0005	10	and Algorithms		-		5	ISE-II	10		
							ESE	50	20	
							ISE-I	10		
UOEL06**	OE	Open Elective-I	3	-	-	3	MSE	30	-	40
COLLOO					-		ISE-II	10		
							ESE	50	20	
							ISE-I	10		
							MSE	30	-	
UELN06XX	PE	Professional	3	-	-	3	ISE – II	10		40
		Elective-II					ESE	50	20	-
UELN0661	Audit-IV	Aptitude Enhancement with Vedic Maths	2	-	-	-	ESE	100	40	40
							ISE	25	1	0
UELN0641	PRJ	Mini Project	-	-	2	1	ESE(OE)	50		20
UELN0631	РС	Computer Archi- tecture and Operating Sys- tem LAB		_	2	1	ISE	50	2	20
UELN0632	PC	Model Based Design	-	-	4	2	ISE	25		0
		LAB					ESE (OE)			20
		Data Structures					ISE	50	2	20
UELN0633	PC	and Algorithms LAB	-	-	2	1	ESE (POE)	50	2	20
	DC	Digital Signal]	\mathbf{r}	1	ISE	50		
UELN0634	PC	Digital Signal Processing LAB	-	-	2	1	ESE (POE)	50		20
			16+					900		60
	Total		2	-	12	22	-	(+100 Audit)	(+40	Audit)

Note:

- ESE: End Semester Examination, MSE: Mid Semester Examination, ISE: In Semester Evaluation.
- HS: Humanities, Social science and Management, BS: Basic sciences including mathematics
- **ES:** Engineering Science,**PC:** Professional Core,**PE:** Professional Elective
- **OEL:** Open elective, **PRJ**: Project work, Seminar, Internship in industry etc.
- ** :Course code for Open Elective
- XX : Course code for Professional Elective
- \$\$: Course code for Audit Course

List of Professional Electives

Year	Professional Elective	Course Code	Communica- tion Stream	Course Code	Embedded VLSI Stream	Course Code	Systems and Tech- nologies Stream
Third Year B.Tech -I	Professional Elective-I	UELN0521	Wireless Communica- tion Networks	UELN0522	CMOS VLSI Design	UELN0523	Automotive Electronics
Third Year B.Tech -II	Professional Elective-II	UELN0621	Digital Image Processing	UELN0622	Embedded System Program- ming	UELN0623	Bio- Medical Electronics

List of Professional Electives LAB

Year	Professional Elective	Course Code	Communi- cation Stream	Course Code	Embedded VLSI Stream	Course Code	Systems and Technologies Stream
Third Year B.Tech-I	Professional Elective-I	UELN0534	Wireless Communica- tion Networks LAB	UELN0535	CMOS VLSI Design LAB	UELN0536	Automotive Electronics LAB

List of Audit Courses

Year	Course Code	Audit Course	Audit Course
Third Year B.Tech-I	UELN0561	Audit Course-III	Industry 4.0
Third Year B.Tech-II	UELN0661	Audit Course-IV	Aptitude Enhancement with Vedic Maths

List of Open Electives

Year	Course Code	Open Elective-I
Third Year B.Tech-II	UOEL0625	Microcontroller Architectures and Programming
	UOEL0626	Industrial Automation

Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur Teaching and Evaluation scheme for Final Year B.Tech. Program in Electronics Engineering Semester-VII

(Final Year B.Tech-I)

	Curricu-		Tea			scheme	E	valuatio	n Schem	е
Course	lum	Course	L	Т	Р	Credits	Scheme		Weighta	ge
Code	compo- nent							Max	Ι	Min
							ISE-I	10		
UELN0701	PC	Embedded System	4	_	_	4	MSE	30		40
CLLIN0701	10	Design	- T	-	-	т	ISE-II	10		
		Design					ESE	50	20	
							ISE-I	10		
UELN0702	PC	Computer Net-	4	_	_	4	MSE	30		40
UELIN0702	IC	works	4	-	-	4	ISE-II	10		
	WOIKS						ESE	50	20	
							ISE-I	10		
UOEL07**	OE	Open Elective-II	3	_	_	3	MSE	30		40
UOLL07	OL		5	-	-	5	ISE-II	10		
							ESE	50	20	
							ISE-I	10		
UELN07XX	PE	Professional	3		-	3	MSE	30		40
		Elective-III				_	ISE-II	10	20	
							ESE	50	20	
UELN0703	ES	Scripting Languages	1	-	-	1	ISE	50	20	20
UELN0761	Audit-V	Smart Manufacturing	2	-	-	-	ESE	100	40	40
		Embedded System					ISE	50	2	0
UELN0731	PC	Design LAB	-	-	2	1	ESE(POE)	50	2	0
UELN0732	ES	Scripting Languages LAB	-	-	2	1	ISE	50	20	
	DC	Computer			- -		ISE	50		
UELN0733	PC	Networks LAB	-	-	2	1	ESE(POE)) 50	20	
						2	ISE	50	20	
UELN0751	PRJ	Project-I	-	-	4	2	ESE(OE)	50	20	
	Total	1	15+2	0	10	20	-	800 (+100 320(+40 Au Audit)) Audit)

Total Credits: 20 Total Contact Hours/Week: 27 Hrs

Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur Teaching and Evaluation scheme for

Final Year B.Tech. Program in Electronics Engineering Semester-VIII (Final Year B.Tech-II)

	Curricu-		Tea	ichi	ng s	scheme	Eva	luatio	n Schem	e
Course Code	lum compo-	Course	L	Т	P	Cre- dits	Scheme		Weight	age Min
UELN08XX	PE	Professional Elective-IV	3	-	-	3	ISE-I MSE ISE-II ESE	10 30 10 50	20	40
UELN08XX	PE	Professional Elective -V	1	-	-	1	ISE-I MSE ISE-II ESE	10 30 10 50	20	40
UELN0861	Audit-VI	Audit Course-VI (Online Course)	2	-	-	-	-	100	40	40
UELN0851	PRJ/WI	Project-II and Winter Internship (WI)	-	-	12	6	ISE-I ISE-II ESE (OE)	50 50 100	20 40	80
UELN08XX	PE	Professional Elective -IV LAB	-	-	2	1	ISE ESE(POE)	50 50	20 20	40
UELN08XX	PE	Professional Elective -V LAB	-	-	2	1	ISE ESE(OE)	50 50	20 20	40
	Total			0	16	12	-	600 (+100 Au-	240(+40) Audit)

Total Credits: 12 Total Contact Hours/Week: 22 Hrs

Note:

- ESE: End Semester Examination, MSE: Mid Semester Examination, ISE: In Semester Evaluation.
- HS: Humanities, Social science and Management, BS: Basic sciences including mathematics
- ES: Engineering Science, PC: Professional Core, PE: Professional Elective
- **OEL:** Open elective, **PRJ**: Project work, Seminar, Internship in industry etc.
- ** : Course code for Open Elective
- XX : Course code for Professional Elective
- \$\$: Course code for Audit Course

List of Professional Electives

Year	Professional Elective	Course Code	Communication Stream	Course Code	Embedded VLSI Stream	Course Code	Systems and Technologies Stream
Final Year B.Tech- I	Professional Elective-III	UELN0721	Antennas and Wave Propaga- tion	UELN0722	SOC De- sign and Testing	UELN0723	Soft Computing
Final Year B.Tech- II	Professional Elective-IV	UELN0821	Microwave Theory and Techniques	UELN0822	Mixed Sig- nal Design	UELN0823	Modern Power Electronics
Final Year B.Tech- II	Professional Elective-V	UELN0824	Digital TV	UELN0825	IOT and Cloud Computing	UELN0826	PLC and SCADA

List of Professional Electives LAB

Year	Profession- al Elective	Course Code	Communi- cation Stream	Course Code	Embed- ded VLSI Stream	Course Code	Systems and Technologies Stream
Final Year B.Tech-II	Professional Elective-IV	UELN0834	Microwave Theory and Techniques LAB	UELN0835	Mixed Signal Design LAB	UELN0836	Modern Power Electronics LAB
Final Year B.Tech-II	Professional Elective-V	UELN0837	Digital TV LAB	UELN0838	IOT and Cloud Compu- ting LAB	UELN0839	PLC and SCA- DA LAB

List of Audit Courses

Year	Course Code	Audit Course	Audit Course
Final Year B.Tech-I	UELN0761	Audit Course-V	Smart Manufacturing
Final Year B.Tech-II	UELN0861	Audit Course-VI	Online

List of Open Electives

Year	Course Code	Open Elective-II
Final Year	UOEL0725	Artificial Intelligence
B.Tech-I	UOEL0726	Introduction to Control systems

Title of the Course: Electromagnetic Engineering	L	Т	Р	Credit
Course Code:UELN0501	3	1		4

Course Pre-Requisite: Knowledge of Basic coordinate systems, vector algebra

Course Description: This course provides the foundations of electromagnetic theory, with applications in electrical and electronic engineering. Topics include: vector algebra, electrostatics, magneto statics, Faraday's law of electromagnetic induction, differential and integral forms of Maxwell's equations, boundary field conditions, electromagnetic waves, propagation of electromagnetic waves, transmission lines.

Course Objectives:

- 1. Students recall concepts from vector calculus, integral and differential equations in the analysis of electromagnetic problems
- 2. Students will able to define, identify, differentiate, illustrate and simulate electric and magnetic fields
- 3. Students recognize and analyze Maxwell's equations
- 4. Students describe, recognize and manipulate plane electromagnetic waves in dielectric and conducting media
- 5. Students determine fundamental characteristics of simple transmission lines in the time domain and analyze it

Course Learning Outcomes:

- 1. The students will be able to design the transmission line.
- 2. Students will be able to understand the basic concepts of electromagnetic engineering
- 3. Able to analyze the parameters of plane waves and transmission lines.

CO	After the completion of the course the student	Bloom's Cognitive			
	should be able to	level	Descriptor		
CO1	Relate vector calculus to static electric, mag-	II	Understanding		
	netic fields in diff. Engineering situations.				
CO2	Solve problems in electrostatic, magneto static,	III	Applying		
	plane waves and transmission lines				
CO3	Analyze the Maxwell's equations in different	IV	Analyzing		
	mediums, different forms and apply them to di-				
	verse engineering problems.				
CO4	Explain the phenomena of wave propagation in	V	Evaluating		
	different media and Design transmission line by				
	inputting different parameters				

CO-PO Mapping:

CO	PO	PO1	PO1	PO1	PSO	PSO								
-PO	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO	2	1												
1														
CO	2	2	1	1										
2														
CO		2		1										
3														
CO	1	1	2	1									2	2
4														

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions e	tc.
MSE: Assessment is based on 50% of course content (Normally first three modules)	
ESE: Assessment is based on 100% course content with60-70% Weightage for course con-	ntent (nor-
mally last three modules) covered after MSE.	X X
Course Contents:	
Unit 1: Vector Algebra	06 Hrs.
Review of vector Analysis and Cartesian, Cylindrical and spherical coordinate systems,	
Basic vector algebra, Point and Unit vector transformations, Dot product, Cross product,	
curl, divergence, Gradient.	
Unit 2: Electrostatics	06 Hrs.
Coulomb's law & electric field, field due to distributed charges, Flux density, Gauss's	
law and its applications, divergence theorem, Electrostatic potential, potential gradient,	
electric dipole, Electrostatic energy density, Boundary conditions for electrostatic field.	
Unit 3: Steady Magnetic Field	07 Hrs.
BiotSavarts law, Ampere's circuital law, Stoke's Theorem, Magnetic flux density &	
Vector magnetic potential, Current carrying conductors in magnetic fields, Torque on	
loop, Energy stored in magnetic field, Boundary conditions for magneto static field.	
Unit 4: Maxwell's Equations	04 Hrs.
Inconsistency of Ampere's law, Faraday's law, Maxwell's equations for static field,	01 1113.
time varying field & harmonically varying fields and in word statement, Comparison of	
field & circuit theory.	
	00. 11
Unit 5: Electromagnetic Waves	09 Hrs.
Wave propagation in dielectric & conducting media, Modification in wave equations for	
sinusoidal time variations, Characteristics of plane wave in a) pure dielectric media, b)	
Conducting media, Reflection of electromagnetic wave for normal incidence, Polariza-	
tion. Poynting theorem.	00 YY
Unit 6: Transmission Lines	08 Hrs.
Types of transmission lines, equivalent circuit, Transmission line equations, primary	
and secondary constants of transmission line, Transmission line parameters, terminated	
uniform transmission line, Reflection coefficient, VSWR, group velocity, phase veloc-	
ity, Applications of Smith chart for Impedance matching Technique a) Single stub b)	
Double stub.	
Textbooks:	
1. "Electromagnetics", John D. Kraus, Tata McGraw-Hill.	
2. "Principles of Electromagnetics", S. C. Mahapatra and SudiptaMahapatra, Tata McGra	w -
Hill, 2011.	
3. Sadiku, "Elements of Electromagnetics" 4th edition, Oxford University Press.	
4. Electromagnetic waves – R K Shevgaonkar, Tata mc-Graw Hill 1st Ed, 2005.	****
5."Problems and Solutions in Electromagnetics" W H Hayt and J A Buck Tata mc-Graw	Hill
References:	
1] WilliamHayt, Buck, "Engineering Electromagnetics", Mc Graw Hill.	
2] "Electromagnetic Waves and Radiating Systems", E. C. Jordan & K. Balman, 2nd edit	ion, PHI.
3] "Field and Wave Electromagnetics", David K. Cheng, Pearson Education.	. 1 5 1
4] "Electromagnetics with Applications" Kraus & Fleisch, 5th Edition, McGraw Hill Inter	national Edi-
tion	
Unit wise Measurable students Learning Outcomes:	
1. Comprehend the principles of electric and magnetic field. (L1, L2 and L3)	
2. Apply the fundamentals of electromagnetic to analyze the performance of transmission	n
Lines and antennas. (L5 and L6)	
3. Compare and contrast difference between static and time- varying electromagnetic fi	elds.
(L3)	
4. Design the impedance matching network for maximum power transmission. (L4 and L	
5. Test, debug and evaluate the performance of a typical transmission line in terms of V	SWR, reflec-
tion coefficient using Smith Chart. (L5)	
6. Work in team to prepare a report based on survey of effects of radiation (EMI) from c	ell
phone, transmitters, antennas etc.	

Title of					mmui	nicatio	on					L	Т	Р	Credit
Course												3	-	-	3
		-	site: M	lathem	natical	Analy	/sis Sk	tills, P	robabi	lity	theory,	Conce	ept of	Mod	ulation,
Sampli															
		-									•	iffere	ent Dig	gital (Commu-
nication	n techr	nques,	, its me	odulati	ion-de	modul	lation :	schem	es and	SN	R.				
Course															
											chastic p				
												to ev	valuate	e the	perform-
		•	•	•					n chan			1		1 1	1
											us digit l in diffe				ation and
															s. various
															different
	ital con						euge i		,1511115	,, un	ury zing,	, und	comp	uning	uniterent
Course															
CO	After	r the c	omple	etion o	f the c	course	e the s	tuden	t		Bloom's	s Cog	nitive		
	shou	ld be a	able to)							level	Descriptor		r	
CO1							•		munica	ì-	II	Under-			
				ght int		.	1	1			11		standing		5
CO2				•				nemes	to mee	et	V	Evaluating		g	
~~~			<b>.</b>	mance	<b>.</b>							0			8
CO3						ie dig	ital co	ommu	nicatio	n	II		-	nder-	
COA	<b>.</b>	,		oss tal	/	1:60	erent		ulatior	_				nding 1der-	5
CO4		parati		Study hnique		d1116	erent	mod	ulation	1-	II			nding	
CO-PC				mique	6								કાર્ય	numş	5
CO-1 C	PO	PO PO	PO	PO	PO	PO	PO	PO	PO	PC	) PO	PO	PS	PS	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		01												
CO1	3														
CO2	1				3								1		
CO3		3	1												
CO4				3							3				
Assessi	ments	:													
т															

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% Weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1: : Probability Theory	5 Hrs.
Concept of experiment, event, sample space, and probability, Axioms and	
Laws of Probability, conditional Probability and its properties, concept of total prob-	
ability and Bay's Theorem, numerical on all the topics	
Unit 2: Random Variables	8 Hrs.
Concept of random Variables, types of random variables, concept of Distribu-	
tion function, Cumulative Distribution Function(CDF), Probability Mass Function,	
Probability Density Function(PDF), Joint CDF and joint PDF, concept of Expectation,	
MSV, MVS, Variance, and standard Deviation, concept and types of distribu-	
tion/density functions, study of some standard distribution/density functions viz. bi-	
nomial, uniform, Geometric, exponential, Rayleigh distribution and Gaussian PDF,	
numerical on all the topics.	
Unit 3: Random Processes and Noise	8 Hrs.
Concept of Random Process, Time averaging and Ergodicity, Auto correlation,	
cross correlation, concept of Power spectral density, concept of cross power spectral	
density, wiener-khintchen-einstein theorem, concept of stationary process, strict-sense	
and wide-sense stationary process, concept of noise as a random process, noise tem-	
perature, noise resistance, its equivalent circuit representation, concept of AWGN and	
its power spectral density, numerical on all the topics	
Unit 4: Digital Source Coding	6 Hrs.
Quantization: Uniform Quantization, Non uniform Quantization, Companding,	
Pulse Code Modulation (PCM), Differential Pulse code modulation (DPCM), Delta	
modulation, Noise in delta modulation, Adaptive delta modulation(ADM), CVSD.	
Performance of all coding schemes based on, Effect of noise, Bandwidth and Signal to	
Noise ratio (SNR), numerical on all the topics	
Unit 5: Digital Modulation and Demodulation Schemes	10 Hrs.
Generation, Detection, Signal Space diagram, Spectrum, Bandwidth, Effi-	
ciency and probability of error analysis of : Amplitude Shift Keying (ASK), Phase	
Shift Keying (PSK), Frequency Shift Keying (FSK), Binary Phase Shift Keying	
(BPSK), Quadrature Phase Shift Keying (QPSK), Differential Phase Shift Keying	
(DPSK), Differentially Encoded Phase Shift Keying (DEPSK), Minimum Shift Keying	
(MSK), Gaussian Minimum Shift Keying (GMSK), Quadrature Amplitude Modulation	
(QAM), duo-binary signalling	
Unit 6: Optimum Receiver	5 Hrs.
Concept of ISI and its mitigation, concept of Eye Pattern, concept of Nyquist	
filter, Raised cosine filter, Optimum Receiver-Matched Filter& its Properties, Correla-	
tion receiver	
Textbooks:	•
1. Modern digital and analog communication, Oxford University Press, 4 th edition, B. P	. Lathi, Zhi
Ding	
2. Analog and Digital Communication, TMH Education, T L Singal	
References:	
1] Digital Communications, Wiley Publication, Simon Haykin	
2] Principals of Communication Systems, McGraw Hill Publication	
3] Digital Communications, McGraw Hill Publication, John G Proakis	
Unit wise Measurable students Learning Outcomes:	
1. Student should be able to solve the problems based on Probability and theory	
2. Student should be able to solve the problems based on random variables	
	cordingly
3. Student should understand the concept of random process and model the noise ac	
<ol> <li>Student should understand the concept of random process and model the noise ac</li> <li>Student should be able to calculate different performance parameters of source content.</li> </ol>	amb
	Jump
4. Student should be able to calculate different performance parameters of source co	ung

Fitle o	f the Course: Power Electronics	L	Т	P	Credits
Cours	e Code: UELN0503	3		-	3
Cours	e Pre-Requisite: Electronic Devices and circuits. Network	analysi	s, sign	als and s	ystems.
Cours	e Description:				
Power	Electronics course introduces the basic concepts of power se	micond	uctor d	levices ar	nd power
conver	ters. The course deals with the basic analysis of ac-dc, dc-ac,	dc-dc, a	ic-ac co	onverters	•
	e Objectives:				
1.	To know, identify and define the basic elements of power ele- teristics, specifications, operation and protection.	ectronics	s devic	es and th	eir charac
2.	To understand fundamentals of controlled rectifier.				
3.	To analyze working of DC-DC converters (choppers), AC-A and control strategies.	C conve	erters,	DC-AC c	onverters
4.	To discuss the important applications of power devices and p most common types of dc-dc, ac-dc and dc-ac converters.	provide	critical	evaluati	on of the
Course	e Outcomes:				
CO	After the completion of the course the student will be	Bloor	n's Co	gnitive	
	able to	level	Desc	criptor	
CO1	Illustrate working of simple Power Electronic circuits.	II	Und	erstandin	g
CO2	Analyze phase controlled converters, Choppers and Inver- ters.	III	App	lying	
CO3	Experiment applications of power electronic devices and	III	Ann	lvina	

CO	After the completion of the course the student will be	Bloon	n's Cognitive
	able to	level	Descriptor
CO1	Illustrate working of simple Power Electronic circuits.	II	Understanding
CO2	Analyze phase controlled converters, Choppers and Inver- ters.	III	Applying
CO3	Experiment applications of power electronic devices and power converters.	III	Applying
<b>CO4</b>	Understand operation of power drives.	II	Understanding

### **CO-PO Mapping:**

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3							1						
CO2		3	2	1					2				3	
CO3														
<b>CO4</b>	3													

#### **Assessments :**

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three units)

ESE: Assessment is based on 100% course content with60-70% Weightage for course content (normally last three units) covered after MSE.

Course Contents:	
Unit 1: Power Semi Conductor Devices	8 Hrs.
Construction- : V-I Characteristics, Dynamic Characteristics during, turn on, turn off,	
gate triggering Characteristics of SCR, Two transistor analogy - SCR , Construction,	
working, & V-I Characteristics of Diac, Triac, Construction, working, & V-I Charac-	
teristics GTO, MOSFET, IGBT.	
Unit 2: Firing and commutation Circuits of SCR	6 Hrs.
Turn On methods of SCR: R triggering circuit RC triggering circuit, UJT triggering	
circuit with design, Cosine based firing circuit and microprocessor based firing circuit	
for bridge controlled converter. SCR Turn off method: Class A, Class B, Class C, Class	
D, Class E,& Class F	
Unit 3: AC-DC Converters (1-Phase & 3-Phase Controlled Rectifiers)	7 Hrs.
Derivations of Vdc & Vrms are expected for following configuration:	
1 $\Phi$ Half Wave Controlled Rectifier with R & RL load. Midpoint converter with RL	
load. Bridge converter with R, RL and RLE load for continuous current mode of op-	
eration with and without freewheeling diode, Semi converter with RL load.	
Concepts of 3-phase, 3-phase half controlled and full controlled converter with	
RL load (continuous and discontinuous current mode of operation).Numerical based on	
performance parameters of above all converter.	
Unit 4: DC-AC Converters(Inverters)	7 Hrs.
Single phase inverter – Principle and operation of half bridge and full bridge inverters.	
Harmonic reduction techniques of inverter: Quasi square wave, Multiple PWM and	
sine wave PWM Three Phase inverters (180, 120 degrees conduction modes of opera-	
tion) - Voltage control techniques for inverters. Harmonic analysis is expected	
.Numerical based on above.	
Unit 5: Chopper Circuits	7 Hrs.
Introduction to Choppers. Step down chopper with R & RL load. Step up chopper	
with R & RL load . Classification and quadrant operation of chopper (class A to class	
F).Voltage control technique of Chopper (frequency modulation & TRC.)	
Unit 6: Cyclo-converters and Fundamentals of Electric Drives.	7 Hrs.
Introduction to cyclo-converters. 1-phase to 1-phase, 3-phase to 3-	
phase: bridge configuration. Block diagram of an electric drive, parts of electric drive,	
and selection criteria of electric drives. Comparison of D.C. and A.C. drive. Adjustable	
speed drive. D.C. Motor: D.C. Shunt and separately excited.	
Text Books:	
1. 1.M.H. Rashid, "Power Electronics", 3rd Edition, Pearson.	
2. M.D. Singh, K.B. Khanchandani, "Power Electronics", 2nd Edition, Tata- McGraw Hi	11.
Reference Books:	
1 Mohan, Undeland, Riobbins, "Power Electronics" 3rd Edition, Wiley.	
2. P.C.Sen, "Power Electronics", Tata McGraw-Hill Education.	
3. Dr. P. S. Bhimra "Power Electronics" Khanna Publications	

#### Unit wise Measurable Learning Outcomes: Unit 1: Power Semi Conductor Devices & Commutation Circuits Students will be able to a. Understand the characteristics of electronic elements. . b. Categorize the various power electronic devices **Unit 2: Firing and commutation Circuits of SCR** Students will be able to a) Design SCR firing circuits. b) Analyse different commutation circuits. Unit 3: AC-DC Converters (1-Phase & 3-Phase Controlled Rectifiers) Students will be able to a) Understand rectifier operation and waveforms b) Develop the basic skills in design and analysis of basic phase controlled converters. **Unit 4: DC-AC Converters(Inverters)** Students will be able to a) Understand inverter operation and waveforms **Unit 5 : Chopper Circuits** Students will be able to a. Develop the knowledge about various configurations of chopper. Unit 6: Cyclo-converters and Fundamentals of Electric Drives. Students will be able to a. Understand the operation of cyclo converters. b. Gain knowledge and understanding of ac & dc drives.

Title of the Course: Microcontrollers				L	]	[ ]	P C	Credit	
Course Code:UELN0504				4	-	-	-	4	
Course Pre-Requisite: Number system, lo									
Course Description: Basic introduction to mplementation. It includes microcontroller									
nanagement and other related topics.									
Course Objectives: . Understand the architecture of 8051 and 1	DIC 16f87	micro	control	lor					
2. Understand the instruction set of 8051 Pl									
6. Understand the peripherals and its progra					micro	contro	ller		
L. Understand using peripherals to build a									
Course Learning Outcomes:									
1. Explain von Neumann architecture,	Harvard a	rchitect	ure, Cl	[SC &	RIS	C archi	itecture of	of mi-	
crocontrollers.	1.a.o.a								
2. Demonstrate ON CHIP resources of									
<ol> <li>Develop assembly language program</li> <li>Carry out Interfacing of microcontrol</li> </ol>		offahi	n recov	road					
5. Design small applications with KEI					ETO	ols			
					210	010			
CO After the completion of the course	the studen	t		Bloo	m's C	ogniti	ve	7	
should be able to				evel		Desci		1	
CO1 Explain von Neumann architectu	ure, Harva	rd		Π	U	nderst	tanding		
architecture, CISC & RISC arch	nitecture of	f mi-							
crocontrollers.								-	
CO2 Demonstrate ON CHIP resource					U		tanding		
CO3 Develop assembly language prog	grams			Π		Appl	ying		
CO4 Carry out Interfacing of microco	ntrollers	with	1	II		Appl	vina	-	
	oner oner s	, ICH				¹ tppi	ying		
				VI		Crea	ting	-	
off chip resources.	EIL micro	o vi-							
off chip resources.	EIL micro	o vi-							
off chip resources.CO5Design small applications with K	EIL micro	o vi-							
off chip resources.CO5Design small applications with K sion & MPLAB IDE ToolsCO-PO Mapping:									
off chip resources.CO5Design small applications with K sion & MPLAB IDE Tools			PO9	PO	PO	PO 12	PSO1	PS02	
off chip resources.CO5Design small applications with K sion & MPLAB IDE ToolsCO-PO Mapping:COPO1PO2PO3PO4PO5P		PO8		10	PO 11	PO 12			
off chip resources.CO5Design small applications with K sion & MPLAB IDE ToolsCO-PO Mapping:COPO1PO2PO3PO4PO5PCO121111							PSO1	PS02	
off chip resources.CO5Design small applications with K sion & MPLAB IDE ToolsCO-PO Mapping:CO-PO Mapping:COPO1PO2PO3PO4PO5PCO1PO1PO2PO3PO4PO5PCO12IICO12IICO12IICO12IICO12IIIIIIIII <td< td=""><td></td><td>PO8</td><td></td><td>10</td><td></td><td>12</td><td>1 1</td><td>1</td></td<>		PO8		10		12	1 1	1	
off chip resources.CO5Design small applications with K sion & MPLAB IDE ToolsCO-PO Mapping:COPO1PO2PO3PO4PO5PCO-PO Mapping:COPO1PO2PO3PO4PO5PCO12IIICO12IICO12IICO12IICO12IIIIIIIIIIIIIIIIIIIIIIII <th colsp<="" td=""><td></td><td>PO8</td><td></td><td>10</td><td></td><td>12 2</td><td></td><td></td></th>	<td></td> <td>PO8</td> <td></td> <td>10</td> <td></td> <td>12 2</td> <td></td> <td></td>		PO8		10		12 2		
off chip resources.CO5Design small applications with K sion & MPLAB IDE ToolsCO-PO Mapping:COPO1PO2PO3PO4PO5PCO121111CO221111		PO8		10		12	1 1	1	
off chip resources.CO5Design small applications with K sion & MPLAB IDE ToolsCO-PO Mapping:COPO1PO2PO3PO4PO5PCO121111CO221111CO313111CO423111	PO6 PO7	PO8 	PO9 -	10 	amina	12 2 2 3	1 1 2 1 3	1	

 ISE 2
 10

 ESE
 50

 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

 MSE: Assessment is based on 50% of course content (Normally first three modules)

 ESE: Assessment is based on 100% course content with60-70% Weightage for course content (nor 

10

ISE 2

mally last three modules) covered after MSE.	
Course Contents:	
<b>Unit 1: 8 BIT MICROCONTROLLER -8051:</b> Introduction to Microcontrollers, Architecture, Functional pin description, Memory organization (Internal and External memory concept),Introduction to ON CHIP resources and respective SFRs ,External Program and Data memory interface , Comparison between different family members (89C52,89C51 RD2,80C535,89C420 and ADUC 812)	8 Hrs.
Unit 2:PROGRAMMING OF 8051 Addressing modes, Instruction set, Assembly language programming, Assembler di- rectives	7 <b>Hrs.</b>
<b>Unit 3: ON CHIP RESOURCES, PROGRAMMING</b> Interrupt structure, Port structure and operation, Timer/Counters(Internal architecture of different modes and programming), Serial port and its operating modes(hardware details of mode-1 only).	8Hrs.
<b>Unit 4: Interrupts &amp; Hardware Interfacing with 8051</b> Timers, serial port, Interrupts, Interfacing of Keypad, Seven Segment display, ADC, DAC, Stepper motor, LCD to 8051. Introduction to Embedded C Programming.	8 Hrs.
<b>Unit 5: INTRODUCTION TO PIC MICROCONTROLLER-16F877</b> Architecture, RESET options, Watch DOG timer ,Memory organization ,,Instruction set and simple assembly language programming(small programs to introduce instruction set).	7 Hrs.
Unit 6: ON CHIP RESOURCES OF PIC 16F877 Overview of I/O Ports (internal structure of PORT A only), Timers, CCP, ADC, In- terrupt structure. Note: Programming of ON CHIP recourses of PIC16F877 is not expected)	8Hrs.
<b>Textbooks:</b> 1."The 8051 microcontroller and embedded systems using assembly and c",By M A M G Mazidi, R D McKinlay-Pearson Education 2."The 8051 Microcontroller "-By I Scott Mackenzie and R C W Phan,4th edition ,Pear tion 3Desgin with PIC microcontroller By J B Peatman, Pearson education	
<ul> <li>References:</li> <li>1. Intel Handbook on 8 Bit and 16 bit embedded controllers</li> <li>2. PIC microchip Midrange MCU family reference manual.</li> <li>3. "The 8051Microcontroller-Archictecture,programming &amp; applications"-K. J. Ayala</li> <li>4. "microcontrollers theory and Applications"-By Ajay Deshmukh-TATA McGraw Hill</li> </ul>	1
<ul> <li>Unit wise Measurable students Learning Outcomes:</li> <li>1. Ability to write assembly program for 8051</li> <li>2. Ability to design simple 8051 based hardware and use peripherals to build an 80 based system.</li> </ul>	)51

Title of the Course: Professional Elective I	L	Т	Р	Credit
Wireless Communication Networks	3			3
Course Code: UELN0521				

**Course Pre-Requisite: Analog Communication, Digital Communication Course Description:** This Course aims to develop the basic concepts of 2G, 3G,4G,5G wireless technologies and networks for voice ,data and multimedia services. The student knows about Multiple access schemes for wireless communication and Frequency spectrum allocation. Student understands different Hand off concepts, channel assignment and frequency reuse concept to provide services to millions and trillions of customers globally. This course helps student to understand different Wireless LAN protocols and communication protocols. This course gives the student to know about latest front end technology like Bluetooth, GPRS,GSM, EDGE etc.

#### **Course Objectives: Course objectives:**

1. To elaborate and show how wireless networks are penetrating our daily lives for data, multimedia and voice services.

2. To explain Multiple access schemes for wireless communication -TDMA, FDMA, CDMA,

SDMA in accessing, analyzing and transferring of remote end data with high reliability and security.

3. To understand different Hand off concepts, channel assignment and frequency reuse concept.

4. To understand concept of GSM architecture GSM channels and frame structure.

5. To understand different Wireless LAN protocols and communication protocol such as IEE802.11

6. To understand use of CDPD networks, wireless access protocols and WAP security.

#### **Course Learning Outcomes:**

CO	After the completion of the course the student should	Bloom'	s Cognitive
	be able to	level	Descriptor
<b>CO1</b>	Illustrate applications of multiple access schemes	П	Understand-
	TDMA, FDMA, CDMA, SDMA in cellular systems.		ing
CO2	<b>Perform</b> system capacity planning for different conditions	V	Evaluating
	and determine co & adjacent channel interference		_
CO3	Interpret use of HLR, VLR, and EAR in GSM call setup	Π	Understand-
	and find applications for GSM channel types		ing
<b>CO4</b>	Understand different Wireless LAN protocols and com-	Π	Understand-
	munication protocol such as IEE802.11, Bluetooth.		ing
CO5	Describe functionality of each block of CDPD/ GPRS	Π	Understand-
	system, visualize routing in GPRS, and locate limitations		ing
	of GPRS		

#### **CO-PO Mapping:**

CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO1 0	PO1 1	PS O 1	PS O 2
CO1	1												
CO2		1								2		1	
CO3		2											
<b>CO4</b>	1		1										
CO5	2				1								

Assessments :		
Teacher Assessment:		
Two components of In Semester Evaluation (IS		and one
End Semester Examination (ESE) having 20%,		
Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/decla	red test/quiz/seminar/Group Discussions etc	
MSE: Assessment is based on 50% of course of		-
ESE: Assessment is based on 100% course con		ent (nor-
mally last three modules) covered after MSE.	tent whiles you weightige for course cont	
Course Contents:		
Unit 1:: INTRODUCTION OF WIRELES	COMMUNICATION	-6- Hrs.
		-0- <b>Hrs</b> .
Challenges in wireless networking, Wireless co		
tion of cellular system, Cellular system archited		
Multiple access schemes for wireless communi	cation -TDMA, FDMA, CDMA, SDMA	
Unit 2: WIRELESS NETWORK PLANN	ING AND OPERATION	-6- Hrs.
Frequencies management, channel assignments	s, frequency reuse, System capacity & its	
improvement, Handoffs & its types, roaming, c	o channel & adjacent channel interference	
Unit 3: DIGITAL CELLULAR NETWOR	RKS	-7- Hrs.
GSM (Global System for Mobile Communicati		
processing in GSM, frame structure of GSM, C	· · · · · · · · · · · · · · · · · · ·	
Unit 4: WIRELESS LAN AND BLUETO		-6- Hrs.
Introduction, Requirements of Wireless LAN, A		0 1115.
and Radio Transmissions, IEEE802.11 Archite		
, Bluetooth Security, Bluetooth Protocols.	eture and Services, Didetootii Areinteeture	
Unit 5: MOBILE DATA NETWORKS		-7- Hrs.
Introduction, Data oriented CDPD (Cellular Di	cital Dealest Data) naturalize CDDS (Can	-/- 1115.
eral Packet Radio Service) GSM Physical layer		
transmission in GSM: Data Services, SMS, HS	CSD, and EDGE (Ennanced Data rates for	
GSM Evolution).	- //	( <b>T</b>
Unit 6: WIRELESS ACCESS PROTOCO		-6- Hrs.
WAP (Wireless Application Protocol) architect	· · · · · · · · · · · · · · · · · · ·	
port layer security, wireless transaction, Wirele	ess Session, Wireless Application Envi-	
ronment, WML		
Textbooks:		
1 William C.Y.Lee, "Mobile communication		
2. T.S. Rappaport, "Wireless Communication		1
3. Yi Bang Lin, "Wireless and mobile networ	k architecture", Wiley India publication	
References:		
1. William Stalling, "Wireless Communicatio	n & Networking"	
2. Dr Sunilkumar Manvi, "Wireless and Mobi		lication
3. Upen Dalal, "Wireless communication and	· · · · ·	
Unit wise Measurable students Learning Ou		
Students are able to explain		
1.Concept of Wireless communications standar	ds, evolution of cellular system and concent	of Mul-
tiple access schemes for wireless communication	•	51 101UI ⁻⁹
<b>2.</b> Frequency reuse in cell Clusters, system Cap		
	•	
<b>3.</b> Frame structure of GSM, Channels used in C		
4. IEEE802.11 Architecture and Services, Blue	tooth Architecture Bluetooth Protocols.	1.000 -
		and GSM
5. Use of Data oriented CDPD (Cellular Digita		
	smission in GSM	

	f the Co			sional	Elect	ive I					L	T	P	Credit
	S VLSI	0									3	_	_	3
	<u>Code:</u>			1 /	1 11	1	1 1	1	( D		-	<u> </u>		
		-			hould	have	knowl	edge o	of Basi	ICS O	Irans	sistors,	, FEI, I	MOSFET
	nciples	Ų		Ų	•	•	. 1		CM			•		<u><u> </u></u>
		<b>.</b>			0						LSI D	esign	aspects	Circuit
	ions, Pr		is and	Adva	ntages	s assoc	elated	with C	IMOS	•				
	e <b>Object</b> indersta		MOS	Trongi	stor <b>B</b>		nd ita	constr	nation					
	ntroduce								uction	•				
	Indersta								eme ile	ing (	MOS	Techn	ology	
	Learn					ni che	uns, s	uosysi	cills us	ing (		1 ccm	lology.	
CO	After				the co	urso t	ha stu	dont c	hould	ha	Rloom	'e Tav	conomy	
CO	able to		mpieu			ui se u	ne stu	uent si	liouiu		level		scriptor	
CO1	Explai		tructur	e of C	MOS						II		rstandin	a
CO1 CO2						CMC	S deci	an			II		erstandin	
CO2 CO3									otorio	,	VI		reating	g
CO3	Design						uniti	ont Stl	alegies	».	VI		reating	
004	Design	1 50059	3101115	using		ر.					V 1	U	cating	
י <b>ה פר</b>	) Mapp	ina.												
<u>CO-1C</u>	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2
CU	101	$\frac{10}{2}$	3	4	5	6	7	8	9	10	11	12	1501	1502
CO1	2		5	-	5	U		0		10	11	14		
$\frac{CO1}{CO2}$	2	2												
														-
		_	3										1	
CO3 CO4 Assessi	ments : er Asses	sment		ester F	Gvaluat	tion (I	SE) O	me Mi	d Sem	ester	Evami	nation	1 1 (MSE)	1 1
CO3 CO4 Assessi Feache	er Asses	esment nts of I Examin	3 : n Sem nation	(ESE)						ights	respec		1 (MSE)	-
CO3 CO4 Assessi Feache	er Asses mponer	sment nts of I Examin Ass	3 n Sem nation essmer	(ESE)						ights Ma	respec rks		1 (MSE)	1
CO3 CO4 Assessi Feache	er Asses mponer	sment nts of I Examin Ass I	3 n Sem nation essmen SE 1	(ESE)						ights Ma 1	respec rks 0		1 (MSE)	1
CO3 CO4 Assessi Feache	er Asses mponer	sment nts of I Examin Ass I	3 n Sem nation essmer SE 1 MSE	(ESE)						ights Ma 1 3	respec rks 0 0		1 (MSE)	1
CO3 CO4 Assessi Feache	er Asses mponer	sment nts of I Examin Ass I I I	3 n Sem nation essmen SE 1 MSE SE 2	(ESE)						ights Ma 1 3 1	respec rks 0 0 0		1 (MSE)	1
CO3 CO4 Assessi Feache Two co End Se	er Asses omponer mester I	sment nts of I Examin Ass I I I	3 n Sem nation essmer SE 1 MSE SE 2 ESE	(ESE) nt	having	g 20%	, 30%	and 5(	)% we	ights Ma 1 3 1 5	respec rks 0 0 0 0 0	tively.	1 (MSE)	and one
CO3 CO4 Assessi Feache Two co End Se SE 1 a	nd ISE	sment nts of I Examin Ass I I I I 2 are b	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o	(ESE) nt n assig	havin	g 20%	, 30%	and 50	)% we	ights Ma 1 3 1 5 mar/G	respec rks 0 0 0 0 0 roup D	tively.	ions etc	and one
CO3 CO4 Assessi Feache Fwo co End Se SE 1 a MSE: 4	nd ISE 2	sment nts of I Examin Ass I I I I 2 are b ent is	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o based o	(ESE) nt n assig	having gnmen % of cc	g 20%	ared te	and 50 st/quiz	)% we	ights Ma 1 3 1 5 aar/G irst tl	respec rks 0 0 0 0 roup D nree m	viscuss odules	(MSE)	and one
CO3 CO4 Assessi Feache Two co End Se SE 1 a MSE: A	nd ISE Assessme	sment nts of I Examin Ass I I I 2 are b ent is b ent is b	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o based o ased o	(ESE) nt n assig on 50% n 1009	having gnmen % of cc % cour	g 20%	ared te	and 50 st/quiz	)% we	ights Ma 1 3 1 5 aar/G irst tl	respec rks 0 0 0 0 roup D nree m	viscuss odules	(MSE)	and one
CO3 CO4 Assessi Feache Two co End Se End Se SE 1 a MSE: A ESE: A nally la	nd ISE Assessme assessme	sment nts of I Examin Ass I I 2 are b ent is ent is b ent is b ent is b	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o based o ased o	(ESE) nt n assig on 50% n 1009	having gnmen % of cc % cour	g 20%	ared te	and 50 st/quiz	)% we	ights Ma 1 3 1 5 aar/G irst tl	respec rks 0 0 0 0 roup D nree m	viscuss odules	(MSE)	and one
CO3 CO4 Assessi Feache Fwo co End Se End Se	nd ISE Assessme ast three Conter	sment nts of I Examin Ass I I 2 are b ent is b ent is b e modu nts:	3 n Sem nation essmen SE 1 MSE SE 2 ESE ased o based o based o les) co	(ESE) nt n assig on 50% on 100% overed	having gnmen % of cc % cour	g 20%	ared te	and 50 st/quiz	)% we	ights Ma 1 3 1 5 aar/G irst tl	respec rks 0 0 0 0 roup D nree m	viscuss odules	(MSE)	and one
CO3 CO4 Assessi Feache Two co End Se End Se	nd ISE 2 Assessme ast three INT	sment nts of I Examin Ass I I 2 are b ent is b ent is b ent is b modu nts: RODU	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o based o based o les) co	(ESE) nt n assig on 50% n 100% overed	nmen 6 of cc 76 cour after N	g 20% t/decla purse c rse cor MSE.	, 30%	and 50 st/quiz t (Norr vith60-	)% we //semir nally f 70% V	ights Ma 1 3 1 5 aar/G irst tl Veigh	respec rks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tively. viscuss odules or cou	ions etc rse conto	and one
CO3 CO4 Assessi Feache Two co End Se End Se SE 1 a MSE: A SE: A nally la Course Unit 1: MOS T	nd ISE 2 Assessme ast three Conter Transisto	sment this of I Examin Ass I Ass I 2 are b ent is b ent is b ent is b ent is b modu nts: RODU ors, MO	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o based o based o les) co	(ESE) nt n assig on 50% on 100% overed DN ansisto	having gnmen % of cc % cour after M	g 20% t/decla ourse c rse cor MSE. ches, 0	, 30%	st/quiz st/quiz t (Norr vith60-	)% we //semir nally f 70% V	ights Ma 1 3 1 5 aar/G irst tl Veigh	respec rks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tively. Viscuss odules or cou	ions etc rse control ep-	and one
CO3 CO4 Assessi Feache Two co End Se End Se	nd ISE ( Assessme ast three Conter INT Transisto tions, N	sment this of I Examin Ass I I 2 are b ent is b ent is b ent is b ent is b modu nts: RODU IOS The IOS The	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o based o based o les) cc UCTIC DS Tra ransist	(ESE) nt n assig on 50% on 100% overed DN ansisto or The	having gnmen % of co % cour after M r Swit cory -	t/decla burse c rse cor MSE. ches, 0	, 30%	st/quiz st/quiz (Norr /ith60-	)% we //semir nally f 70% V c, Circ Devic	ights Ma 1 3 1 5 ar/G ïrst tl Veigh uit an ce De	respect rks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tively.	ions etc rse conternations pep-ons,	and one
CO3 CO4 Assessi Feache Ewo co End Se End Se Est: A MSE: A SE: A MSE: A Course Jnit 1: MOS T esenta The Co	nd ISE and three and the and three and the	sment this of I Examin Ass I I 2 are b ent is b ent is b e modu nts: RODU OS Trentary	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o based o based o les) co JCTIC DS Tra ransist CMOS	(ESE) nt n assig on 50% on 100% overed DN ansisto or The S Inver	having gnmen % of cc % cour after M r Swit cory - rter-D0	t/decla t/decla purse cor MSE. ches, 0 Introd C Cha:	, 30%	st/quiz st/quiz t (Norr vith60- S Logia MOS stics, S	)% we //semir nally f 70% V c, Circ Devic Static I	ights Ma 1 3 1 5 nar/G irst tl Veigh uit an ce De Load	respec rks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tively.	ions etc prise contended sions, ers, ers, 5	and one
CO3 CO4 Ssessificache Swo co End Se SE 1 a ASE: A ASE: A ASE: A nally la Course Unit 1: AOS T esenta Che Co	nd ISE ( Assessme ast three Conter INT Transisto tions, N	sment this of I Examin Ass I I 2 are b ent is b ent is b e modu nts: RODU OS Trentary	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o based o based o les) co JCTIC DS Tra ransist CMOS	(ESE) nt n assig on 50% on 100% overed DN ansisto or The S Inver	having gnmen % of cc % cour after M r Swit cory - rter-D0	t/decla t/decla purse cor MSE. ches, 0 Introd C Cha:	, 30%	st/quiz st/quiz t (Norr vith60- S Logia MOS stics, S	)% we //semir nally f 70% V c, Circ Devic Static I	ights Ma 1 3 1 5 nar/G irst tl Veigh uit an ce De Load	respec rks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tively.	ions etc prise contended sions, ers, ers, 5	and one
CO3 CO4 Assessification Feacher Two co End Se End Se SE 1 a MSE: A SE: A MSE: A SE: A MILL Course Joint 1: MOS T esenta The Co The Di Vices.	nd ISE 2 Assessme ast three Conter INT Transisto tions, Momplementia	sment this of I Examin Ass I Ass I 2 are b ent is b ent is b ent is b ent is b ent is b ent is b condu ors, MC IOS Trentary al Inve	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o based o based o les) cc DS Tra ransist CMOS rter, T	(ESE) nt n assig on 50% on 100% overed <b>DN</b> ansisto or The S Inver he Tra	having gnmen % of co % cour after M r Swit cory - ter-D0 nsmiss	t/decla burse c rse cor MSE. ches, 0 Introd C Char sion G	, 30%	st/quiz st/quiz t (Norr /ith60- S Logic MOS stics, S he Tri	)% we //semir nally f 70% V c, Circ Devic Static I Static I	ights Ma 1 3 1 5 aar/G irst tl Veigh uit av ce De Load Inver	respec rks 0 0 0 0 roup D nree m ntage fo ntage fo sign E MOS ter, Bi	tively. viscuss odules or cou tem R quatic Inverte polar I	ions etc rse conternations ep- ons, ers, De-	and one
CO3 CO4 Assessi Feache Two co End Se End Se SE 1 a MSE: A MSE: A Course Unit 1: MOS T resenta The Co The Di vices. Unit 2:	nd ISE and	sment this of I Examin Ass I P 2 are b ent is b	3 n Sem nation essmen SE 1 MSE SE 2 ESE ased o based o based o les) co UCTIO DS Tra ransist CMOS rter, T	(ESE) nt n assig on 50% on 100% overed DN ansisto or The S Inver he Tra	naving gnmen 6 of cc % cour after M r Swit cory - ter-D( nsmiss	t/decla burse c rse cor MSE. ches, 0 Introd C Char sion G	, 30%	st/quiz st/quiz (Norr vith60- MOS stics, S he Tri <b>RFOR</b>	)% we //semir nally f 70% V c, Circ Devic Static I State	ights Ma 1 3 1 5 ar/G irst tl Veigh uit an ce De Load Inver	respect rks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tively.	ions etc prise contra sions, ers, De- <b>8</b>	and one
CO3 CO4 Assessi Feache Fwo co End Se End Se End Se Est: A MSE: A SE 1 a MSE: A ESE: A nally la Course Unit 1: MOS T resenta The Co The Di vices.	nd ISE 2 Assessme ast three Conter INT Transisto tions, Mompleme fferentia - CIRC ction, R	sment this of I Examin Ass I I 2 are b ent is b ent is b ent is b e modu nts: RODU ors, MC IOS Trentary al Inve UIT Cl esistar	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o based o based o les) co UCTIC OS Tra ransist CMOS rter, T	(ESE) nt n assig on 50% n 1009 overed DN ansisto or The S Inver he Tra CTER timatio	having gnmen % of cc % cour after M cory - ter-DC nsmiss ISATI on Cap	t/decla burse c rse cor MSE. C Chas ches, 0 Introd C Chas sion G ON Al acitan	, 30%	st/quiz st/quiz t (Norr vith60- S Logid MOS stics, S he Tri <b>RFOR</b>	)% we //semir nally f 70% V c, Circ Devic Static I Static I Static I	ights Ma 1 3 1 5 nar/G irst tl Veigh uit an ce De Load Inver	respect rks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tively.	ions etc prise contra sions, ers, De- <b>8</b>	and one
CO3 CO4 Assessi Feache Two co End Se Two co End Se SE 1 a MSE: A SE: A nally la Course Unit 1: MOS T esenta The Co The Di Vices. Unit 2: ntrodu Charac	nd ISE 2 Assessme ast three Conter INT Transisto tions, M mpleme fferentia CIRC ction, R teristics	sment this of I Examin Ass I Ass I 2 are b ent is b ent i	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o based o based o les) cc DS Tra ransist CMOS rter, T HARA nce Est S-Gato	(ESE) nt n assig on 50% on 100% overed DN ansisto or The S Inver he Tra CTER timatic e Tran	naving gnmen % of cc % cour after M r Switt cory - ter-DC nsmis: ISATI on Cap sistor	t/decla burse corrector MSE. ches, 0 Introd C Char sion G ON Al acitan Sizing	, 30%	st/quiz st/quiz t (Norr vith60- G Logio MOS stics, S he Tri <b>RFOR</b> imation er Diss	)% we )% we //semir nally f 70% V c, Circ Devic Static I Static I Static I Static I Static I	ights Ma 1 3 1 5 nar/G irst tl Veigh uit an ce De Load Inver	respect rks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tively.	ions etc prise contra sions, ers, De- <b>8</b>	and one
CO3 CO4 Assessi Feache Two co End Se SE 1 a MSE: A SE 1 a MSE: A SE: A nally li Course Unit 1: MOS T esenta The Co The Di rices. Unit 2: ntrodu Charac Conduc	er Asses omponer mester I nd ISE ( Assessme ast three e Conter INT fransisto tions, M omplementia - CIRC ction, R teristics ctors, Ch	sment this of I Examin Ass I 2 are b ent is b ent	3 n Sem nation essmer SE 1 MSE SE 2 ESE ased o based o based o les) cc UCTIC DS Tra ransist CMOS rter, T HARA nce Est S-Gato Sharing	(ESE) nt n assig on 50% on 100% overed <b>DN</b> ansisto or The S Inver he Tra timatic e Tran g, Desi	having gnmen % of cc % cour after M r Swit cory - ter-D( nsmiss of Cap sistor S gn Ma	g 20% t/decla ourse c rse cor VISE. ches, 0 Introd C Char sion G ON Al acitan Sizing rginin	, 30% ared te content atent w CMOS uction racteri ate, T ND PE ce Esti , Powe g, Rel	st/quiz st/quiz (Norr /ith60- S Logic MOS stics, S he Tri <b>RFOR</b> imation er Diss iability	)% we )% we //semir nally f 70% V c, Circ Devic Static I Static I Static I Static I Static I	ights Ma 1 3 1 5 nar/G irst tl Veigh uit an ce De Load Inver	respect rks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tively.	ions etc rse conte prese conte solutions etc f g a (MSE) f f f f f f f f f f f f f	1 and one ent (nor- Hrs
CO3 CO4 Assessi Feache Two co End Se End Se SE 1 a MSE: A SE 1 a MSE: A ESE: A nally la Course Unit 1: MOS T esenta The Co The Di vices. Unit 2: ntrodu Charac Conduc Unit 3:	nd ISE 2 Assessme ast three Conter INT Transisto tions, M mpleme fferentia CIRC ction, R teristics	sment its of I Examin Ass I 2 are b ent is b ent	3 n Sem nation essmen SE 1 MSE SE 2 ESE ased o based o based o les) co UCTIO DS Tra ransist CMOS rter, T HARA nce Est S-Gato Sharing RCUI	(ESE) nt n assig on 50% on 100% overed DN ansisto or The S Inver he Tra CTER timatic e Tran g, Desi T AN	naving gnmen % of cc % cour after N % cour after N r Swit cory - ter-D( nsmiss sistor s gn Ma D LOO	t/decla burse c rse cor MSE. ches, 0 Introd C Chai sion G ON Al acitan Sizing urginin GIC D	, 30% ared te content atent w CMOS uction racteri date, T ND PE ce Esti , Powe g, Rel DESIG	st/quiz st/quiz (Norr /ith60- G Logid MOS stics, S he Tri <b>RFOR</b> imation er Diss iability <b>N</b>	)% we //semir nally f 70% V c, Circ Devic Static I State MAN( n, Indu ipation 7.	ights Ma 1 3 1 5 ar/G irst tl Veigh uit an ce De Load Inver	respec rks 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tively. viscuss odules or cou tem R quatic Inverta polar l <b>ATION</b> itching uting	ions etc rse conte prese conte solutions etc f g a (MSE) f f f f f f f f f f f f f	and one

Unit 4: SYSTEM DESIGN AND DESIGN METHOD	8 Hrs.
Design Strategies CMOS Chip Design Options, Design Methods, Design Capture	0 111 5.
Tools, Design Verification Tools, Design Economics, Data Sheets.	
Unit 5: TESTING	4 Hrs.
	4 1115.
CMOS Testing - Manufacturing Test Principles, Design Strategies for Test, Chip	
Level Test Techniques, System Level Test Techniques, Layout Design for Improved	
Testability.	( H
Unit 6: CMOS SUB SYSTEM DESIGN	6 Hrs.
Data Path Operations-Addition/Subtraction, Parity Generators, Comparators,	
Zero/One Detectors, Binary Counters, ALUs, Multiplication, Shifters, Memory Ele-	
ments, Control-FSM, Control Logic Implementation.	
Textbooks:	
1. Nell H. E. Weste and Kamran Eshraghian, " Principles of CMOS VLSI Design ",	
Addision Wesley, II nd edition .	
References:	
1. John P. Uyemura "Introduction to VLSI Circuits and Systems", Wiley India	
Edition	
2. Jacob Backer, Harry W. Li and David E. Boyce, "CMOS Circuit Design, Layout	and Simula-
tion ", Prentice Hall of India, 1998.	
Unit wise Measurable students Learning Outcomes:	
1. Student would be able to explain what the structure of CMOS is.	
2. Student would be able to explain characterization of CMOS and different perfo	rmance
measures.	
3. Student would be able to design basic logic circuits in CMOS.	
4. Student would be able to identify different tools required for CMOS design.	
5. Student would be able to explain different testing techniques for CMOS.	
6. Student would be able to design different subsystems using CMOS.	
or source of the to design unter the subsystems using through	

<b>Fitle</b> of	f the Course: Professional Elective I		L	Т	P	Credit
Autom	otive Electronics	3	-	-	3	
Course	e Code: UELN 0523					
Course	e Pre-Requisite: Electronics Instrumentation, Control syste	em basi	cs			
Course	e Description:					
	ourse is designed to understand concepts in automotive electron					
trol sys	stems, sensors interfacing, safety systems and onboard dia	gnostic	s. Stud	ents v	vill b	e able to
correla	te concepts learned in electronics engineering to modern a	utomo	biles de	signs.		
	e Objectives:					
l. To u	nderstand the concepts of Automotive Electronics systems & s	subsyste	ems			
2. To u	nderstand sensors and sensor monitoring mechanisms and actu	lator me	echanisı	ns ali	gned	to
Autom	otive systems					
3. To u	nderstand, design and model various automotive control system	ms				
4. To d	escribe various communication systems, wired and wireless pr	rotocols	used in	vehio	cle ne	twork-
ing						
5. To u	nderstand automotive Safety standards,					
6. To u	nderstand vehicle on board and off board diagnostics					
Course	e Learning Outcomes:					
CO	After the completion of the course the student should be		n's Cog			
	able to	level	Descri	*		
CO1	Illustrate use of electronics control system in Automotive power train	2	Under	stand	ing	
CO2	Discuss sensor and interfaces used in Automotive ECU	2	Under	standi	ing	
CO3	Summaries various protocols and standards used in ECU communication	2	Under			
<b>CO4</b>	Outline concepts in automotive safety and on board diag-	2	Under	stand	ing	

## **CO-PO Mapping:**

CO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	2													
CO2	2													
CO3					3									
<b>CO4</b>							2							

#### Assessments :

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively. ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

**ESE**: Assessment is based on 100% course content with60-70% Weightage for course content (normally last three modules) covered after MSE.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

Course Contents:	( Hara
Unit 1:-Internal combustion engine fundamentals (6Hrs)	6 Hrs.
Engine types and their operations: Engine Operating Cycles, Engine Components, Spark-	
Ignition Engine Operation, Examples of Spark-Ignition Engines, Compression-Ignition En- gine Operation	
Engine parameters: Geometrical Properties of Reciprocating Engines, Brake Torque and	
Power, Indicated Work per Cycle, Mechanical Efficiency, Road-Load Power, Mean Effec-	
tive Pressure, Specific Fuel Consumption and Efficiency, Air/Fuel Ratios, Automotive	
transmissions: Transmission fundamentals, Types-MT, AT, CVT and DCT	0.11
Unit 2:Automotive Control Systems	8 Hrs.
Basic Automotive System, System Components, Evolution of Electronics in Automotive.	
Fuel control system, Ignition control system. Emission control. Hybrid and Electric power	
train. Control techniques used in hybrid system, Alternators, battery technology and charging	
systems, Special Control Schemes: Vehicle braking fundamentals, Antilock systems, Vari-	
able assist steering and steering control, Controls for Lighting, Wipers, Air-	
conditions/Heating.	( 11
Unit 3:- Sensor Technologies In Automotive	6 Hrs.
In-vehicle sensors: Working principles, limitations and use within the automotive context of	
the following:	
Temperature sensing e.g. coolant, air intake, Position sensing e.g. crankshaft, throttle plate.	
Pressure sensing e.g. manifold, exhaust differential type, Distance sensing e.g. anti-collision,	
Velocity sensing e.g. speedometer, anti-skid, Torque sensing e.g. automatic transmission,	
acceleration sensing e.g. Airbags, Flow sensing and measurement e.g. Fuel injection.	
Use of Actuators: Types, Working principle, limitations and use within the automotive con-	
text of each type	7.11
Unit 4:- Automotive Communication Systems	7 Hrs.
Automotive Buses: CAN, LIN, Flex Ray, Recent trends in Automotive buses (Such as,	
MOST, IE, IELLI, D2B, and DSI)	0.11
Unit 5:- Safety Systems in Automobiles	8 Hrs.
Safety in Automotive: Safety norms and standards. Passenger comfort and security systems	
A) Active Safety Systems: ABS, TCS, ESP, Brake assist etc	
B) Passive Safety Systems: Airbag systems, Advanced Driver Assistance Systems ( Lane	
Departure Warning, Collision Warning, Pedestrian Protection, Headlights Control)	
C) Functional Safety: Need for safety systems, safety concept, safety process for product life	
cycle, safety by design, validation.	
Unit 6:- Automotive Diagnostics	7 Hrs.
Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system, Preliminary	
checks and adjustments, Self-diagnostic system. Fault finding and corrective measures, Elec-	
tronic transmission checks and Diagnosis, Diagnostic procedures and sequence, On board	
and off board diagnostics in Automobiles, OBDII, Concept of DTCs, DLC, MIL, Freeze	
Frames, History memory, Diagnostic tools, Diagnostic protocols : KWP2000 and UDS.	
Textbooks:	
1. Internal_Combustion_Engines_Fundamentals_by_J.B.Heywood, McGraw-Hill	a .
2. Williams. B.Ribbens, "Understanding Automotive Electronics", 6th Edition, 2003, Elsevier	Sc1-
ence, Newness Publication	
3. Robert Bosch, "Automotive Electronics Handbook", John Wiley and Sons, 2004	
1. Ronald K Jurgen, "Automotive Electronics Handbook", 2nd Edition, McGraw-Hill, 1999.	
2. James D Halderman, "Automotive Electricity and Electronics", PHI Publication 2005.	
3. Iqbal Husain, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003.	
4. Tom Denton, "Advanced Automotive Diagnosis", 2nd Edition, Elsevier, 2006.	

Unit wise Measurable students Learning Outcomes:

1. Students should be able understand concepts of IC engine and develop engine control algorithms to improve fuel economy, emission and torque.

2.Students should be able to discuss control algorithms used in automotive system

3. Students should be able grasp sensor systems used in automotive system

4. Students should be able describe automotive communication standards and systems

5. Students should be able to specify automotive safety system

6. Students should be able to perceive diagnostic requirements, standards and protocols

Title of the Course: Industry 4.0	L	Т	Р	Credit			
Course Code:UELN0561	2	-	-	-			
Course Pre-Requisite: Nil. No prior technical background is required.							

#### **Course Description:**

The world is at the onset of the Fourth Industrial Revolution and this revolution is very much driven by the smarts in automating decision making and processes. Advancements in IT has resulted in immense improvements in computational power across nearly all electronic devices and enhanced capabilities in connecting the dots in an increasingly networked society. This course provides a comprehensive coverage on, among others, the role of data, manufacturing systems, various Industry 4.0 technologies, applications and case studies. In particular, we also draw input from researchers and practitioners on what are the opportunities and challenges brought about by Industry 4.0, and how organisations and knowledge workers can be better prepared to reap the benefits of this latest revolution

## **Course Objectives:**

- 1. To understand the concept of Industry 4.0 and its application in business world
- 2. To gain deep insights to harness smartness from input data describe physical model of basic components
- 1. To understand what needs to be done in order to overcome business challenges.

#### **Course Learning Outcomes:**

CO	After the completion of the course the student	Bloom's Cognitive			
	should be able to	level	Descriptor		
CO1	Understand drivers and enablers of Industry 4.0	II	Understanding		
CO2	Understand the various systems used in a manufacturing plant and their role in an Industry 4.0 world	II	Understanding		
CO3	Understand the opportunities, challenges brought about by Industry 4.0 and how organisations and individuals should prepare to reap the benefits	IV	Understanding		
CO4	Analyze the power of Cloud Computing in a net- worked economy	IV	Analyzing		

#### **CO-PO Mapping:**

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1														
CO2														
CO3														
CO4														

#### Assessments :

#### **Teacher Assessment:**

one End Semester Examination (ESE) having 100% Weightage.

Assessment	Marks
ESE	100

ESE: Assessment is based on 100% course content 100% Weightage for entire course content.

Course Contents:						
Unit 1: INTRODUCTION TO INDUSTRY 4.0:	3 Hrs.					
The Various Industrial Revolutions, need of Industry 4.0, industry 4.0 and IIoT data flow chart, in-	-					
dustry 4.0 and Indian Business transformation, industry 4.0 in USA, Europe, China and other coun-						
tries, Comparison of Industry 4.0 Factory and Today's Factory, Trends of Industrial Big Data and						
Predictive Analytics for Smart Business Transformation						
Unit 2: COMPONENTS OF Industry 4.0	4 Hrs.					
Software components related to industry 4.0, Hardware components related to industry 4.0 viz.						
, Internet of Things (IoT) & Industrial Internet of Things (IIoT) & Internet of Services, data						
storage and data analysis, Smart Manufacturing, Smart Devices and Products, Predictive Analytics						
Unit 3: FUNDAMENTALS OF IO LINK TECHNOLOGY	5 Hrs.					
Concept of IO link, various IO link blocks and their functionality, IO link competency, IO link solu-	• • • • • • • • • • • • • • • • • • • •					
tions to the real industrial problems, benefits of IO link, IO link masters into industry 4.0 and IIoT,						
Support System for Industry 4.0, Cloud Computing Basics, Cloud Computing and Industry 4.0,						
Support System for makeury no, cread comparing Dastes, cread comparing and makeury no,						
Unit 4: IMPACT OF INDUSTRY 4.0 ON INDIAN BUSINESS DEVELOPMENT	5 Hrs.					
Need of adopting industry 4.0 in Indian Business, Impact on quality of growth, smart growth, sus-	0 1110.					
tainable growth, inclusive/shared growth, integrated growth, return on investments of mechanical						
and digital factories						
Unit 5: BUSINESS AND RELATED ISSUES IN INDUSTRY 4.0	4 Hrs.					
Opportunities and Challenges, Strategies for competing in an Industry 4.0 world, issues related to	1 1115.					
cyber-physical securities, PLC systems, mobile computing systems etc.						
Unit 6:- Other Applications and Case Studies	3 Hrs.					
Industry 4.0 laboratories, IIoT case studies (International) : Russia's experience, Japan's experi-	5 1115.					
ence, China's experience, Contrasting interpretations of the British experience, India's experi-						
ence, German Experience, IIoT case studies (National): related to CNC industry, Milk Processing						
and Packaging Industries, Manufacturing Industries, Electronic Manufacturing Industries						
Textbooks:						
1. Industry 4.0: Managing The Digital Transformation by Alp Ustundag, Springer Publication						
2. Industry 4.0: Industrial Revolution of the 21st Century, by Elena G. Popkova, Yulia V. Raguli	ina.					
Aleksei V. Bogoviz	,					
References:						
1. Industry 4.0: The Industrial Internet of Things", by Alasdair Gilchrist (Apress)						
2. "Industrial Internet of Things: Cybermanufacturing Systems" by Sabina Jeschke, Christian	Brecher.					
Houbing Song, Danda B. Rawat (Springer)	,					
Unit wise Measurable students Learning Outcomes:						
1. The student will be able to explain basics of Industry 4.0 revolutions and standards.						
2. The student will be able to understand different services given by industry 4.0 standards.						
3. The student will be able to understand different disciplines and preventive measures followed in	industrv					
4.0	5					
4. The student will able to understand the role of data in cloud computing and the significance of cloud	oud com-					
puting in industry 4.0						
5. The student will be able to analyze and inculcate the industry 4.0 standards						
6. The student will be able to analyze different opportunities, challenges and strategies associated with indust	ry 4.0					

	the Co	ourse:	Digita	l Com	munica	ation I	LAB			L	T	P		Credit
	Code:		0							-	-	2		1
ourse	Pre-R	equisit	te: Co	ncept o	of Mod	ulatio	n, Sam	pling '	Theor	em, al	oility t	o hand	lle basic	labora
	uipmei													
													nance of	differ
-			nicatio	n tech	niques,	, its mo	odulati	ion-de	nodul	ation s	chem	es and	SNR.	
	Objec													
	To stud	•					•				-			
											nd to e	valuate	the perfe	ormanc
	of digit													
													nodulatio	n and
													ications.	1
													h various	
	commu	-			c know	ledge	for desi	igning,	anary	zing, a	na con	nparing	differen	i digita
ourse	Learn	ing Ot	utcome	es:										
CO	Aftor	the equ	mnlati	on of t	he cou	rsa th	studo	nt	E	Bloom'	s Coar	itive		
	should			011 01 1	lie cou	i se un	e stude	iiit		evel		Descri	ntor	_
C <b>O</b> 1				sic co	ncepts	of dig	ital con	nmuni				Deseri	pior	_
					field/pr	-			ca-	II		Under	standing	5
CO2	Evalu				_				eet					
			equirer	•	mouu	iution		<i>b</i> to m		V		Eval	uating	
CO3					e the	digital	comm	unicati	ion					
	proble					0				II		Eval	uating	
C <b>O</b> 4	Study					odulati	on tecł	nniques	5	II		Stu	dingy	
	· ·												01	
<b>O-PO</b>	Марр	ing:												
CO	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2
		2	3	4	5	6	7	8	9	10	11	12		
C <b>O</b> 1	3													
C <b>O2</b>	1				3									
CO3		3	1											
CO4				3							3			
CO4	1													
	nents :													
eache	r Asses									_	_			
eache		t of In	Seme			n (ISE)	) and o	ne End	Seme	ster Ex	amina	tion (E	SE) havi	ng

Assessment	Marks
ISE	50
ESE (OE)	50

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

Course Contents:	
Experiment No. 1: Study of Pulse Code Modulation	2 Hrs.
Aim and Objectives: to study the Pulse Code Modulation	
Outcomes: student understood the need and the process of PCM	
Theoretical Background: Pulse code modulation Experimentation:	
Results and Discussions:	
Conclusion:	

Experiment No. 2: Study of Delta Modulation	2 Hrs.
Aim and Objectives: Study Delta Modulation	
Outcomes: students understood the advantages of DM over PCM	
<b>Theoretical Background:</b> The output of a delta modulator is a bit stream of samples,	
at a relatively high	
Experimentation:	
Results and Discussions:	
Conclusion:	
Experiment No. 3: Study of Adaptive Delta Modulation	2 Hrs.
Aim and Objectives: Study Adaptive Delta Modulation	
Outcomes: the advantages of ADM over DM studied	
<b>Theoretical Background:</b> It's an Advanced version of DM and is devised to over-	
come Slope Overload and Granular Noise error in DM	
Experimentation:	
Results and Discussions:	
Conclusion	
Experiment No. 4: Study of Amplitude Shift Keying	2 Hrs.
Aim and Objectives: Study Amplitude Shift Keying	
<b>Outcomes:</b> student understood modulation of digital signal	
<b>Theoretical Background:</b> Amplitude shift keying (ASK)	
Experimentation:	
Results and Discussions:	
Conclusion:	
Experiment No. 5: Study of Frequency Shift Keying	2 Hrs.
Aim and Objectives: Study FSK	2 111 5.
<b>Outcomes:</b> students understood the advantage of FSK over ASK	
Theoretical Background: concept of FSK	
Experimentation:	
Results and Discussions:	
Conclusion:	
Experiment No. 6: Study of Phase Shift Keying	2 Hrs.
Aim and Objectives: Study PSK	2 111 5.
Outcomes: students understood the advantage of PSK over FSK & ASK	
Theoretical Background: study of PSK	
Experimentation:	
Results and Discussions:	
Conclusion:	
Experiment No. 7: Study of Quadrature Phase Shift Keying	
Aim and Objectives: Study QPSK	
<b>Outcomes:</b> The students understood the need of QPSK in digital communication	
Theoretical Background: QPSK basics	
Experimentation:	
Results and Discussions:	
Conclusion:	
<b>Experiment No. 8:</b> Study of Standard Random Variables Density Distribution Function	
Aim and Objectives: Study Standard Random Variables Density Distribution Func-	
tion Outcomes: Students understood the concept of CDE and PDE	
Outcomes: Students understood the concept of CDF and PDF	
Theoretical Background:	
Experimentation: study experiment	
Results and Discussions: Conclusion:	
<b>Textbooks:</b> 1. modern digital and analog communication, Oxford University Press, 4 th edition, B.	
I I movern digital and analog communication Uxford University Press 4 ^{TT} edition R	r. Latni, Zhi Ding

2. Analog and Digital Communication, TMH Education, T L Singal

#### **References:**

- 1] Digital Communications, Wiley Publication, Simon Haykin
- 2] Principals of Communication Systems, McGraw Hill Publication

3] Digital Communications, McGraw Hill Publication, John G Proakis.

#### **Experiment wise Measurable students Learning Outcomes:**

- 1. Students understood PCM modulation-demodulation scheme
- 2. Students understood Delta Modulation
- 3. Students understood Adaptive Delta Modulation
- 4. Students understood Amplitude Shift Keying
- 5. Students understood Frequency Shift Keying
- 6. Students understood Phase Shift Keying
- 7. Students understood Quadrature Phase Shift Keying
- 8. Students understood Standard Random Variables Density/Distribution Function

Title of the Course: Power Electronics LAB	L	Т	Р	Credit
Course Code : UELN0532	-	-	2	1
Course Pre-Requisite:				
Basic knowledge of Electronic devices and circuits, Network ana	lysis. Sig	gnals a	and Sy	ystems.
Course Description:				
Power Electronics Lab course demonstrate the basic power devic	es and p	ower o	conve	rters which is the foun-
dation for power transmission, distribution and utilization of the	Electrica	l Engi	neerii	ng discipline. The
course deals with the basic analysis of ac-dc, dc-ac, dc-dc, ac-ac	converte	rs.		
Course Objectives:				
5. To know, identify and define the basic elements of power	electron	ics de	vices	and their characteris-
tics, specifications, operation and protection.				
6. To understand fundamentals, phase controlled rectifiers (	ph and	3ph) a	nd lin	e commutated inverters.
7. To have the ability to analyze working of DC-DC convert	ers (cho	ppers)	, AC-	AC converters, DC-AC
converters and control strategies.				

8. To discuss the important applications of power devices and provide critical evaluation, of the most common types of dc-dc, ac-dc and dc-ac converters

#### **Course Learning Outcomes:**

CO	After the completion of the course the student should be	Bloom's Cognitive					
	able to	level Descriptor					
CO1	Demonstrate simple Power Electronic circuits.	II	Understanding				
CO2	Develop the practical skills in analysis of basic phase con-	III Applying					
	trolled converters, Choppers and Inverters.						
CO3	Demonstrate the various applications of power electronic	II	Understanding				
	devices and power converters.						
<b>CO4</b>	Understand chopper operation and waveforms.	II	Understanding				

#### **CO-PO Mapping:**

CO	PO	PSO1	PSO2											
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3								2					
CO2	3	3	3											
CO3	2													
<b>CO4</b>	1												1	

#### Assessments :

#### **Teacher Assessment:**

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50
ESE	50

ISE are based on practical performed/ Quiz/ Lab assignments/ Presentations/ Group Discussions/ Internal oral etc.

ESE: Assessment is based on oral examination and lab experimentation.

Course Contents:	
Experiment No. 1:	2Hrs.
Aim and Objectives: To Study of VI characteristics of SCR.	
Outcomes: The students will be able toplot V-I Characteristics of the SCR for the Forward	
Theoretical Background: Theoryof V-I characteristics of diode.	
Experimentation: Characteristics of SCR.	
<b>Results and Discussions:</b> Observed and noted analysis Parameters	
Conclusion:Implemented circuit and observed the result	

Experiment No. 2:	2Hrs.
Aim and Objectives: To Study of Triggering circuits of SCR.	
<b>Outcomes:</b> The students will be able demonstrate working of different triggering circuits of	
SCR.(R, R-C, UJT Triggering circuits)	
<b>Theoretical Background:</b> Theory of Triggering methods of SCR.	
Experimentation: Tiggering methods of SCR.	
<b>Results and Discussions:</b> Observed Waveforms and noted analysis Parameters.	
<b>Conclusion:</b> Implemented circuit and observed the result.	
Experiment No. 3:	2Hrs.
•	21115.
Aim and Objectives: Commutation method of SCR	
<b>Outcomes:</b> The students will be able to demonstrate working of commutation technique of SCR	
by observing waveforms.	
Theoretical Background: Theory and operation of commutation techniques of SCR.	
Experimentation: Analysis of commutation techniques of SCR.	
<b>Results and Discussions:</b> observed Waveforms and noted analysis Parameters	
Conclusion:Implemented commutation circuit.	
Experiment No. 4:	2Hrs.
Aim and Objectives: To Study step-down chopper.	
Outcomes: The students will be able to demonstrate working of step-down chopper.	
Theoretical Background: Theory and operation step-down chopper.	
Experimentation: Analysis and implementation of step-down chopper. Results and Discus-	
sions: observed Waveforms and noted analysis Parameters	
Conclusion:Implemented step-down chopper.	
Experiment No. 5:	2Hrs.
Aim and Objectives: To Study single phase HWR with R and RL load.	
<b>Outcomes:</b> The students will be able to demonstrate working of single phase HWR.	
<b>Theoretical Background:</b> Theory and operating principle single phase HWR for R and RL load.	
<b>Experimentation:</b> Analysis of outwaveforms and o/p voltage for R and RL load.	
<b>Results and Discussions:</b> observed Waveforms and noted analysis Parameters.	
<b>Conclusion:</b> Implemented single phase HWR.	
Experiment No. 6:	2Hrs.
Aim and Objectives: To Study of single phase FWR with R and RL load.	21115.
<b>Outcomes:</b> The students will be able to demonstrate working of single phase FWR.	
<b>Theoretical Background:</b> Theory and operation principle single phase FWR.	
Experimentation: Analysis of outwaveforms and o/p voltage for R and RL load.	
<b>Results and Discussions:</b> observed Waveforms and noted analysis Parameters	
Conclusion:Implemented FWR for R and RL Loads.	0.15
Experiment No. 7:	2Hrs.
Aim and Objectives: To Study of single phase semiconverter with R and RL load.	
Outcomes: The students will be able to demonstrate working of single phase FWR.	
Theoretical Background: Theory and operation principle single phase FWR.	
Experimentation: Analysis of outwaveforms and o/p voltage for R and RL load.	
Results and Discussions: Observed Waveforms.	
Conclusion: Implemented semiconverter for R and RL Loads.	
Experiment No. 8:	2Hrs.
Aim and Objectives: To Study 1-phase to 1-phase cycloconverter.	
<b>Outcomes:</b> The students will be able to demonstrate working principle of 1-phase to 1-phase	
cycloconverter.	
<b>Theoretical Background:</b> Theory and operation principle cycloconverter.	
Experimentation: Analysis of o/p waveforms.	
Results and Discussions: Observed Waveforms.	
Conclusion: Implemented 1-phase to 1-phase cycloconverter.	
	2Hrs.
Experiment No. 9:	∠nrs.
Aim and Objectives: To study 3 phase inverter for R and RL load.	
	1
<b>Outcomes:</b> The students will be able to demonstrate working principle of 3-phase inverter with R and RL load.	

Theoretical Background: Theory and operation principle of 3 phase inverter. Experimenta-	
tion: Analysis of 3 phase inverter from o/p waveforms.	
Results and Discussions: Observation of output waveforms and analysis.	
<b>Conclusion:</b> Implemented 3 phase inverter and observe and analysis of output waveforms.	
Experiment No. 10:	2Hrs.
Aim and Objectives: To study four quadrant chopper fed DC drive.	
<b>Outcomes:</b> The students will be able to plot different o/p waveforms for four quaderent DC	
drive.	
Theoretical Background: Theory and operation principle of four quaderent chopper.	
Experimentation: Analysis of output waveforms of four quaderent chopper circuit. Results	
and Discussions: Observation of output waveforms and analysis.	
<b>Conclusion:</b> Implemented 3 phase inverter and observe and analysis of output waveforms.	
Textbooks:	
1. 1.M.H. Rashid, "Power Electronics", 3rd Edition, Pearson.	
2. M.D. Singh, K.B. Khanchandani, "Power Electronics", 2nd Edition, Tata- McGraw Hill.	
3. Dr. P. S. Bhimra "Power Electronics" Khanna Publications	
References:	
1. M.H. Rashid, "Power Electronics", 3rd Edition, Pearson.	
2. Mohan, Undeland, Riobbins, "Power Electronics" 3rd Edition, Wiley.	
3. P.C.Sen, "Power Electronics", Tata McGraw-Hill Education.	
Experiment wise Measurable students Learning Outcomes:	
1. The students will be able to plot V-I characteristics of SCR.	
2. The students will be able to demonstrate different Triggering circuits of SCR.	
3. The students will able to demonstrate working principle of HWR with R and RL load.	
4. The students will able to demonstrate working principle of FWR with R and RL load.	
5. The students will able to demonstrate working principle of semiconverter with R and RI	load.
6. The students will able to demonstrate working principle of commutation circuit of SCR.	
7. The students will able to demonstrate working principle of 1-phase to 1-phase cyclocony	verter.
8. The students will able to demonstrate working principle of 3 phase inverter for R and RI	
9. The students will able to demonstrate working principle of step-down chopper.	
10. The students will able to demonstrate working principle of four quadrant DC drive.	

Title of					ontro	llers I	LAB						L	Т	P	C	redit
Cours	e Cod	le:UE	LN05	533									-	-	2		1
Course																	
Course																	
implem						ontro	ller ar	chited	cture,	prograi	mmir	ng, I/O	Inte	erfacii	ng, Ir	nterrup	ot man-
agemer				ed top	ics.												
Course																	
1. Unde					-												
2. Unde																	
3. Unde							gramr	ning 8	8051a	nd PIC	1618	7/m	croc	ontro	ller		
4. Unde							(	<b>1</b>									
5. Unde				<u> </u>		build	a usei	ul sys	stem								
Course	e Lear Dem						~ . f ~ .										
									<b>21</b> 000 <b>1</b> 00	ma							
	Devel									chip re	COURC	AC					
										& MI			Too	اد			
со СО							irse t					Cogni		15			
CU			able		1 01 11		ii se u	ne su	luent	lev		Cogiii		scripto	)r		
CO1					CH	D ros	ource	s of s	0.0			Ib		rstand			
CO1							& em					U		plyin	<u> </u>		
02		evelop	J 455C	•	rogra	0	a cin	Deuu	cuc	1			Αр	prym	g		
CO3	Cor		t Into		-		aanti	rollor	s with	V	7		Fvo	luatir	10		
COS	Carr	y ou			0	source		oner	s with		/		Lva	iuatii	ig		
CO4	Do	cian c					th KE	'II m	ioro	V	т		Cr	eating	a a		
04	De						ш ке Е Тос			v	1		CI	cating	g		
CO-PC	) Mar			œ IV.				/15									
CO-1C	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	) PO	<u>)</u>	PSC	) P	S	
00	1	2	3	4	5	6	7	8	9	10	11	12		1			
CO1	2	4		•	5		/			10	11	12	-	1		2	
CO2	1		3									2		2	1		
CO2	2		3									2		1			
CO4	2		3	2	2							3		3	1		
Assessi		•	5	2	2							5		5	1		
Teache			ent.														
One co				emeste	er Eva	luatio	on (IS	E) and	done	End Se	emest	er Exa	min	ation	(ESE	) havi	ng
50%, ai							(	_)							(	.)	8
- )			Assess	•							М	arks					
			IS									50					
		F	ESE (1									50					
ISE are	based				form	ed/ Qi	uiz/ M	lini-P	roject	assign	ed/ Pi	resenta	ation	/ Gro	up D	iscussi	ion/
Interna				1					5	U					I		
ESE: A	ssessi	nent i	is base	ed on	Pract	ical ai	nd ora	ıl exai	minati	on							
Course	e Cont	tents:															
Experi	ment	No. 1	: A	ssem	bly la	nguag	ge pro	gramı	ming.							02	2 Hrs
Aim ar	nd Ob	jectiv	ves: U	nders	tand t	the ins	structi	ion se	t of 80	)51							•
Outcor																	
Theore										ion set	: of 8	051					
Experi					keil r	nicro	vision	ı softv	ware								
Results		Discu	ission	s:													
Conclu																	
	erime								_							02 H	rs.
Aim ar		•								l							
Outcor								of soc	;								
• ' • • • • • • •	etical	Back	groun	n <b>d:</b> 80	51 ar	chitec	ture										

Experimentation: Based on keil microvision software	
Results and Discussions:	
Conclusion:	
Experiment No. 3: Port programming	02 Hrs.
Aim and Objectives: Understand the architecture of 8051	
Outcomes: Demonstrate ON CHIP resources of soc	
Theoretical Background: 8051 architecture & instruction set of 8051	
Experimentation: Based on keil microvision software	
Results and Discussions:	
Conclusion:	
Experiment No. 4:Timer programming	02 Hrs.
Aim and Objectives: Understand the peripherals and its programming 8051(Timmer	
section)	
Outcomes: Demonstrate ON CHIP resources of soc	
Theoretical Background: 8051 architecture & instruction set of 8051	
Experimentation: Based on keil microvision software	
Results and Discussions:	
Conclusion	
Experiment No. 5:Serial port programming	02 Hrs.
Aim and Objectives: Understand the peripherals and its programming 8051(Serial	
communication section)	
Outcomes: Demonstrate ON CHIP resources of soc	
Theoretical Background: 8051 architecture & instruction set of 8051	
Experimentation: Based on keil micro vision software	
Results and Discussions:	
Conclusion	
Experiment No. 6: LED interfacing	02 Hrs.
Aim and Objectives: Understand the OFF chip peripherals and its programming	02 111 5.
Outcomes: Demonstrate Off CHIP resources of soc	
Theoretical Background: Port structure of 8051 ,current sink & current source ca-	
pacity of port pins Experimentation: Based on 201/51BD2 development kit	
Experimentation: Based on 89V51RD2 development kit. Results and Discussions:	
Conclusion	02.11
Experiment No. 7: 7 Segment displays interfacing with 8051.	02 Hrs.
Aim and Objectives: Understand the off chip peripherals and its programming.	
Outcomes: Demonstrate Off CHIP resources of soc	
Theoretical Background: Types of 7 segment displays, various interfacing tech-	
niques of 7 seg. displays	
Experimentation: Based on 89V51RD2 development kit.	
Results and Discussions:	
Conclusion	
	02 Hrs.
Experiment No. 8: LCD interfaces with 8051.	
<b>Experiment No. 8:</b> LCD interfaces with 8051. <b>Aim and Objectives:</b> Understand the off chip peripherals and its programming .	
Experiment No. 8: LCD interfaces with 8051. Aim and Objectives: Understand the off chip peripherals and its programming . Outcomes: Demonstrate Off CHIP resources of soc	
<b>Experiment No. 8:</b> LCD interfaces with 8051. <b>Aim and Objectives:</b> Understand the off chip peripherals and its programming .	
Experiment No. 8: LCD interfaces with 8051. Aim and Objectives: Understand the off chip peripherals and its programming . Outcomes: Demonstrate Off CHIP resources of soc	
Experiment No. 8: LCD interfaces with 8051. Aim and Objectives: Understand the off chip peripherals and its programming . Outcomes: Demonstrate Off CHIP resources of soc Theoretical Background: Types of LCD displays, various interfacing techniques of	
Experiment No. 8: LCD interfaces with 8051. Aim and Objectives: Understand the off chip peripherals and its programming . Outcomes: Demonstrate Off CHIP resources of soc Theoretical Background: Types of LCD displays, various interfacing techniques of LCD displays	
Experiment No. 8: LCD interfaces with 8051. Aim and Objectives: Understand the off chip peripherals and its programming . Outcomes: Demonstrate Off CHIP resources of soc Theoretical Background: Types of LCD displays, various interfacing techniques of LCD displays Experimentation: Based on 89V51RD2 development kit.	
Experiment No. 8: LCD interfaces with 8051. Aim and Objectives: Understand the off chip peripherals and its programming . Outcomes: Demonstrate Off CHIP resources of soc Theoretical Background: Types of LCD displays, various interfacing techniques of LCD displays Experimentation: Based on 89V51RD2 development kit. Results and Discussions: Conclusion	02 Hrs.
Experiment No. 8: LCD interfaces with 8051. Aim and Objectives: Understand the off chip peripherals and its programming . Outcomes: Demonstrate Off CHIP resources of soc Theoretical Background: Types of LCD displays, various interfacing techniques of LCD displays Experimentation: Based on 89V51RD2 development kit. Results and Discussions: Conclusion Experiment No. 9: Assembly language programming OF pic 16f877	02 Hrs.
<ul> <li>Experiment No. 8: LCD interfaces with 8051.</li> <li>Aim and Objectives: Understand the off chip peripherals and its programming .</li> <li>Outcomes: Demonstrate Off CHIP resources of soc</li> <li>Theoretical Background: Types of LCD displays, various interfacing techniques of LCD displays</li> <li>Experimentation: Based on 89V51RD2 development kit.</li> <li>Results and Discussions:</li> <li>Conclusion</li> <li>Experiment No. 9: Assembly language programming OF pic 16f877</li> <li>- Aim and Objectives: Understand the instruction set of PIC 16F877</li> </ul>	02 <b>Hrs.</b>
<ul> <li>Experiment No. 8: LCD interfaces with 8051.</li> <li>Aim and Objectives: Understand the off chip peripherals and its programming .</li> <li>Outcomes: Demonstrate Off CHIP resources of soc</li> <li>Theoretical Background: Types of LCD displays, various interfacing techniques of LCD displays</li> <li>Experimentation: Based on 89V51RD2 development kit.</li> <li>Results and Discussions:</li> <li>Conclusion</li> <li>Experiment No. 9: Assembly language programming OF pic 16f877</li> <li>- Aim and Objectives: Understand the instruction set of PIC 16F877</li> <li>Outcomes: Develop assembly language program</li> </ul>	02 <b>Hrs.</b>
<ul> <li>Experiment No. 8: LCD interfaces with 8051.</li> <li>Aim and Objectives: Understand the off chip peripherals and its programming .</li> <li>Outcomes: Demonstrate Off CHIP resources of soc</li> <li>Theoretical Background: Types of LCD displays, various interfacing techniques of LCD displays</li> <li>Experimentation: Based on 89V51RD2 development kit.</li> <li>Results and Discussions:</li> <li>Conclusion</li> <li>Experiment No. 9: Assembly language programming OF pic 16f877</li> <li>- Aim and Objectives: Understand the instruction set of PIC 16F877</li> </ul>	02 Hrs.

Conclusion	
Experiment No. 10: : Assembly language programming of PIC 16f877	02 Hrs.
- Aim and Objectives: Understand the instruction set of PIC 16F877	
Outcomes: Develop assembly language programs	
Theoretical Background: PIC 16F877 architecture & instruction set.	
Experimentation: Based on MPLAB IDE software.	
Results and Discussions:	
Conclusion	
Experiment No. 11: Port programming of PIC 16f877	02 Hrs.
- Aim and Objectives: : Understand the on chip peripherals and its programming of PIC	
16F877	
Outcomes: Develop assembly language programs	
Theoretical Background: PIC 16F877 architecture & instruction set.	
Experimentation: Based on MPLAB IDE software.	
Results and Discussions:	
Conclusion	
Experiment No.12: 7 segment display interfacing with pic 16f877	02 Hrs.
-Aim and Objectives: Understand the peripherals and its programming pic 16f877	
Outcomes: Demonstrate Off CHIP resources of soc	
Theoretical Background: PIC 16F877 architecture & instruction set.	
Experimentation: Based on 16F877 development kit.	
Results and Discussions:	
Conclusion	
Experiment wise Measurable students Learning Outcomes:	
1. Ability to write assembly program for 8051 & PIC 16F877	
2. Ability to design simple 8051 based hardware and use peripherals to build an 8051	
based system using C language	
3. Ability to design simple PIC 16F877 based hardware and use peripherals to build an 8 system using C language	051 based

Title of the Course: Professional Elective –I LAB	L	Т	Р	Credit
Wireless Communication Networks LAB			2	1
Course Code: UELN0534				

**Course Pre-Requisite: Analog Communication, Digital Communication** 

**Course Description:** This Course aims to develop the basic concepts of 2G, 3G,4G,5G wireless technologies and networks for voice ,data and multimedia services. The student knows about Multiple access schemes for wireless communication and Frequency spectrum allocation. Student understands different Hand off concepts, channel assignment and frequency reuse concept to provide services to millions and trillions of customers globally. This course helps student to understand different Wireless LAN protocols and communication protocols. This course gives the student to know about latest front end technology like Bluetooth, GPRS,GSM, EDGE etc.

#### **Course Objectives: Course objectives:**

1. To elaborate and show how wireless networks are penetrating our daily lives for data, multimedia and voice services.

2. To explain Multiple access schemes for wireless communication -TDMA, FDMA, CDMA, SDMA in accessing, analyzing and transferring of remote end data with high reliability and security.

- 3. To understand different Hand off concepts, channel assignment and frequency reuse concept.
- 4. To understand concept of GSM architecture GSM channels and frame structure.
- 5. To understand different Wireless LAN protocols and communication protocol such as IEE802.11
- 6. To understand use of CDPD networks, wireless access protocols and WAP security.

C <u>ourse I</u>	Learning Outcomes:				
CO	After the completion of the course the student should be	Bloom's Cognitive			
	able to	level	Descriptor		
CO1	Illustrate applications of multiple access schemes TDMA,	II	Understanding		
	FDMA, CDMA, SDMA in cellular systems.				
CO2	<b>Perform</b> system capacity planning for different conditions and	V	Evaluating		
	determine co & adjacent channel interference				
CO3	Interpret use of HLR, VLR, and EAR in GSM call setup and	II	Understanding		
	find applications for GSM channel types				
<b>CO4</b>	Understand different Wireless LAN protocols and communi-	II	Understanding		
	cation protocol such as IEE802.11, Bluetooth.				
CO5	Describe functionality of each block of CDPD/ GPRS system,	II	Understanding		
	visualize routing in GPRS, and locate limitations of GPRS				

## **CO-PO Mapping:**

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO 1	PSO 2
CO1	1												
CO2		1								2		1	
CO3		2											
<b>CO4</b>	1		1										
CO5	2				1								

#### **Assessments :**

**Teacher Assessment:** One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50% weights respectively

Assessment	Marks
ISE	50

ISE are based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

Course Contents:	
Experiment No-1- Understanding of Path loss - To understand the path loss prediction	-1- Hrs.
formula.	-1-1115.
Experiment No-2 Pathloss with Shadowing- To understand the effect of shadowing on	-1- Hrs.
pathloss formula.	-1- 1118.
	-2- Hrs.
Experiment No-3- Horizontal and Vertical Beam Pattern - To find the 3dB beam width of a base station antenna.	-2- <b>nrs</b> .
Experiment No-4- Calculation of Boundary Coverage Probability - The objective is to	-2- Hrs.
calculate the probability that the received signal level crosses a certain sensitivity level.	-2- 1118.
Experiment No-5- Calculation of SINR including Beam Tilt -To understand the concept	-2- Hrs.
of co-channel interference and hence Signal to Interference and Noise Ratio.	
A: <b>Downlink</b> -To calculate & plot SINR vs. distance at the MS for adaptation of	
the following parameters:	
<ul> <li>Shadowing effect,</li> </ul>	
Vertical Beam Pattern,	
Tilt Angle variation	
B: Uplink - To calculate & plot SINR vs. distance at the MS for adaptation of the	
following parameters:	
<ul> <li>Shadowing effect,</li> </ul>	
Vertical Beam Pattern,	
Tilt Angle variation.	
Experiment No-6- Frequency Reuse - To understand the cellular frequency reuse concept	-6- Hrs.
fulfilling the following objectives:	
A: Finding the <b>co-channel cells</b> for a particular cell.	
B: Finding the <b>cell clusters</b> within certain geographic area.	
Experiment No-7- Sectoring - The aim of the experiment is to understand the impact of	2- Hrs.
many different parameters influence the downlink C/I ratio.	
Experiment No-8-Handoff - To understand the handover mechanism.	2- Hrs.
Experiment No-9- Flat Fading - To study the outage probability, LCR & ADF in SISO	2- Hrs.
for Selection Combining and MRC.	
10) Frequency Selective Fading - To study the effect of delay spread on frequency selec-	2- Hrs.
tivity.	
Textbooks:	
1. William C.Y.Lee, "Mobile communication Engg", Tata McGraw Hill Publications	
2. T.S. Rappaport, "Wireless Communication, principles & practice", Pearson Education	ı
3. Yi Bang Lin, "Wireless and mobile network architecture", Wiley India publication	
References:	
1. William Stalling, "Wireless Communication & Networking"	
2. Dr Sunilkumar Manvi, "Wireless and Mobile Network", (2nd edition) Wiley India pub	lication
<ol> <li>Dr Sunilkumar Manvi, "Wireless and Mobile Network", (2nd edition) Wiley India pub</li> <li>Upen Dalal, "Wireless communication and Network", Oxford Publication</li> </ol>	lication
<ol> <li>Dr Sunilkumar Manvi, "Wireless and Mobile Network", (2nd edition) Wiley India pub</li> <li>Upen Dalal, "Wireless communication and Network", Oxford Publication</li> <li>Unit wise Measurable students Learning Outcomes:</li> </ol>	lication
<ul> <li>2. Dr Sunilkumar Manvi, "Wireless and Mobile Network", (2nd edition) Wiley India pub</li> <li>3. Upen Dalal, "Wireless communication and Network", Oxford Publication</li> <li>Unit wise Measurable students Learning Outcomes: Students are able to explain</li> </ul>	
<ul> <li>2. Dr Sunilkumar Manvi, "Wireless and Mobile Network", (2nd edition) Wiley India pub</li> <li>3. Upen Dalal, "Wireless communication and Network", Oxford Publication</li> <li>Unit wise Measurable students Learning Outcomes: Students are able to explain</li> <li>1.concept of Wireless communications standards, evolution of cellular system and concept</li> </ul>	
<ul> <li>2. Dr Sunilkumar Manvi, "Wireless and Mobile Network", (2nd edition) Wiley India pub</li> <li>3. Upen Dalal, "Wireless communication and Network", Oxford Publication</li> <li>Unit wise Measurable students Learning Outcomes: Students are able to explain</li> <li>1.concept of Wireless communications standards, evolution of cellular system and concept access schemes for wireless communication</li> </ul>	
<ol> <li>Dr Sunilkumar Manvi, "Wireless and Mobile Network", (2nd edition) Wiley India pub</li> <li>Upen Dalal, "Wireless communication and Network", Oxford Publication</li> <li>Unit wise Measurable students Learning Outcomes: Students are able to explain</li> <li>concept of Wireless communications standards, evolution of cellular system and concept access schemes for wireless communication</li> <li>frequency reuse in cell Clusters, system Capacity, Hand off process and interference</li> </ol>	
<ol> <li>Dr Sunilkumar Manvi, "Wireless and Mobile Network", (2nd edition) Wiley India pub</li> <li>Upen Dalal, "Wireless communication and Network", Oxford Publication</li> <li>Unit wise Measurable students Learning Outcomes: Students are able to explain</li> <li>concept of Wireless communications standards, evolution of cellular system and concept access schemes for wireless communication</li> <li>frequency reuse in cell Clusters, system Capacity, Hand off process and interference</li> <li>frame structure of GSM, Channels used in GSM.</li> </ol>	
<ol> <li>Dr Sunilkumar Manvi, "Wireless and Mobile Network", (2nd edition) Wiley India pub</li> <li>Upen Dalal, "Wireless communication and Network", Oxford Publication</li> <li>Unit wise Measurable students Learning Outcomes: Students are able to explain</li> <li>concept of Wireless communications standards, evolution of cellular system and concept access schemes for wireless communication</li> <li>frequency reuse in cell Clusters, system Capacity, Hand off process and interference</li> <li>frame structure of GSM, Channels used in GSM.</li> <li>IEEE802.11 Architecture and Services, Bluetooth Architecture Bluetooth Protocols.</li> </ol>	of Multiple
<ol> <li>Dr Sunilkumar Manvi, "Wireless and Mobile Network", (2nd edition) Wiley India pub</li> <li>Upen Dalal, "Wireless communication and Network", Oxford Publication</li> <li>Unit wise Measurable students Learning Outcomes: Students are able to explain</li> <li>concept of Wireless communications standards, evolution of cellular system and concept access schemes for wireless communication</li> <li>frequency reuse in cell Clusters,system Capacity, Hand off process and interference</li> <li>frame structure of GSM, Channels used in GSM.</li> <li>IEEE802.11 Architecture and Services,Bluetooth Architecture Bluetooth Protocols.</li> <li>use of Data oriented CDPD (Cellular Digital Packet Data) networks and use of GPRS, a</li> </ol>	of Multiple
<ol> <li>Dr Sunilkumar Manvi, "Wireless and Mobile Network", (2nd edition) Wiley India pub</li> <li>Upen Dalal, "Wireless communication and Network", Oxford Publication</li> <li>Unit wise Measurable students Learning Outcomes: Students are able to explain</li> <li>concept of Wireless communications standards, evolution of cellular system and concept access schemes for wireless communication</li> <li>frequency reuse in cell Clusters, system Capacity, Hand off process and interference</li> <li>frame structure of GSM, Channels used in GSM.</li> <li>IEEE802.11 Architecture and Services, Bluetooth Architecture Bluetooth Protocols.</li> </ol>	of Multiple

CMOS	f the Co S VLSI 1	Design	LAB	sional	Liectiv	ve —1 1	LAB				L	T	Р	Credi
Course	Code:	UELN	0535											1
⁷ 011860	Pre-Re	anisit	o. Stu	dont a	hould	hovo l	mourlo	daa at	f Docio	a in T	- Tronci	-		1 10555
	Gates, A	-				nave k	liowie	uge of	Dasic	5 111 1	Tansis	stors, 1	TETS, P	NOSFE
ē	Descrip		Ų	Ų		nds or	to De	sian a	nd ana	lysis	of Rui	lding	Rlocks (	f Digite
	using C													
	esign Fu													
	ice is ter						0							
Course	Object	ives:	•											
l. To I	Design d	igital d	lesign l	blocks	using	open s	ource '	VLSI I	Design	Tool c	hain.			
. To P	erform d	esign	verifica	ation u	sing D	RC.								
. To S	imulatio	n of D	esign u	ising T	echnol	logy L	ibrarie	s.						
	Learni													
CO	After t	he con	npletio	on of tl	ne cou	rse the	e stude	ent sho	ould be			Taxon		
	able to									leve		Descri	•	
CO1	Constru									VI		Creat	0	
CO2	Test for			2	<u> </u>	<u> </u>			· ·	IV		Analy	U	
CO3	Simula		•	-		ce para	ameter	s of de	esign in	IV		Analy	zıng	
	terms o	I Spee	d Pow	er Area	a.									
	Manni	n												
<u>.0-rc</u> CO	) Mappi   PO1	ng: PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2
CO	101	2	$\begin{vmatrix} 10\\3 \end{vmatrix}$	4	5	6	7	8	9	10	11	12	1501	1502
CO1		-	3		5	U	/	0		10	11		2	2
$\frac{CO1}{CO2}$				2										
CO3		2												
eache	ments : er Assess mponent			tor Eve	Justice	n (ISE)	Ň							
	mponent		essmen		iluatioi		)		N	Marks				
			ISE						1	50				
SE are	based o			erforme	ed/ Ou	iz/ Mir	ni-Proi	ect ass	igned/		tatior	n/ Grou	p Discu	ssion/
	l oral etc	-	1				5		e				1	
Course	Conten	ts: Mi	nimur	n 10 E	xperir	nents	on CN	IOS ci	i <b>rcuit</b> d	esign	and t	esting	using O	pen
ource	Softwar	·e.												
-	ment Li	st:												
. MOS														
	ve: To p l MOSFI		(1) out	put ch	aracter	istics d	& (11) ti	ransfei	r charac	teristi	cs of	an n-cl	annel a	nd p-
	<b>DS Inve</b> ve: To d		and plo	ot the s	tatic (V	/TC) a	nd dyr	namic (	charact	eristics	s of a	digital	CMOS	inverter
		U				,	•					U		
	g <b>Oscilla</b> ve: To d	tor		ot the o	utput c	charact				er ring		C		

# 4. Logic Gates

Objective: To design and plot the dynamic characteristics of 2-input NAND, NOR, XOR and XNOR logic gates using CMOS technology.

# 5. 4x1 Multiplexer

Objective: To design and plot the characteristics of a 4x1 digital multiplexer using pass transistor logic.

## 6. Latches

Objective: To design and plot the characteristics of a positive and negative latch based on multiplexers.

## 7. Registers

Objective: To design and plot the characteristics of a master-slave positive and negative edge triggered registers based on multiplexers.

## **Textbooks:**

1. Nell H. E. Weste and Kamran Eshraghian, " **Principles of CMOS VLSI Design** ", Addision Wesley, II nd edition .

## **References:**

1. John P . Uyemura " Introduction to VLSI Circuits and Systems", Wiley India Edition

2. Jacob Backer, Harry W. Li and David E. Boyce, " CMOS Circuit Design, Layout And Simulation ", Prentice Hall of India, 1998.

Unit wise Measurable students Learning Outcomes:

1. Student would be able to Construct the structure of CMOS.

2. Student would be able to characterize of CMOS and Measure different performance measures.

3. Student would be able to Use tool chain required for CMOS design.

4. Student would be able to Use different testing techniques for CMOS design.

Title of	f the Co	urse:	Profes	sional	Elect	ive-I	LAB									
	otive El code:			AB							L	Т	P	C	edit	
											-	-	2		1	
		-						•			Aut	omo	tive s	ub system	ms, Sen-	
	strumen		Com	nunica	tion p	rotoco	ls, C p	rogran	nming	etc.						
	Descri															
														ab gives		
														e along v		
														n protoco		
														try. Stud the vehic		
														tate and 1		
	ing blue			-		-			1 40000		8	P10.	50110 5	are ana j		
	Object			2		1										
	udy cha		istics o	f sense	ors use	d in a	utomo	biles.								
2. To S ⁴	tudy ser	ial cor	nmuni	cation	protoc	ol use	d by a	utomo	tive in	dust	ry.					
	tudy OE															
	udy bo				by au	tomoti	ive ind	ustry								
	Learni						-				<b>D1</b>				-	
CO	After t		mpleti	on of t	the cou	urse tl	he stud	lent sl	nould	be		-		onomy	_	
<u>CO1</u>	able to			· ·	<u>c</u>		11		1 '1		leve			criptor	_	
CO1	Illustra				f senso	ors use	d by a	utomo	biles		II			standing		
CO2	Analyz Analyz										IV IV			lyzing	_	
CO3 CO4	Design				rol m	dula	using	suitabl	a mia	r0	VI			lyzing eating	_	
004	control		wiper	com	101 110	Juule	using	Suitaoi		0-	V I		CI	cating		
	control															
CO-PC	) Mappi	ing:														
CO	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PC	)	0	PO	PSO1	PSO2	
		2	3	4	5	6	7	8	9	10		11	12			
CO1	2													1		
CO2			2											2		
CO3			2											2		
<b>CO4</b>				3											2	
Assessi																
	er Asses			4 F	1	(101										
One co	mponen				alualio	on (151	<u>c)</u>				Ма	ulra				
			Assess ISI								Marks 50					
ISE are	based o	n nrac			ned/ Or	niz/ M	ini_Pro	niect a	ssione	d/ Pr			n/ Gr	oup Disc	ussion/	
	l oral etc		neur p	CITOIN		u12/ 1 <b>1</b> 1		Jeet a	5515110	u/ 11	05011	uun		oup Disc	ussion	
	Conter		inimu	m 10 ]	Experi	iments	s on A	utoma	otive e	lectr	onic	s				
	experin				<b>r</b>							~				
	Study a		racteri	ze Co	olant te	empera	ature s	ensor								
2.	Study a	nd cha	racteri	ze Ma	nifold	Absol	ute Pro	essure	sensor	•						
	Study a				-											
	Study a															
	Study a															
	Study a				-											
	Study a					-										
	Design								zita							
	Underst Observe															
	Visit to	-		-			-			heel	er					
11.	v 1511 10	ruuio	i izeu		Imphe				ioui w	neel						

### Textbooks:

- 1. Williams. B.Ribbens, "Understanding Automotive Electronics", 6th Edition, 2003, Elsevier Science, Newness Publication
- 2. Robert Bosch, "Automotive Electronics Handbook", John Wiley and Sons, 2004

## **References:**

- 1. Ronald K Jurgen, "Automotive Electronics Handbook", 2nd Edition, McGraw-Hill, 1999.
- 2. James D Halderman, "Automotive Electricity and Electronics", PHI Publication 2005.
- 3. Iqbal Husain, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003.
- 4. Tom Denton, "Advanced Automotive Diagnosis", 2nd Edition, Elsevier, 2006.

## Unit wise Measurable students Learning Outcomes:

- 1. Student would be able to characterize sensors used in modern vehicles.
- 2. Student would be able to Analyze CAN bus protocol
- 3. Student would be able to practice OBD II.
- 4. Student would be able to design DCM.

Title of the LAB: Micro project-III	L	T	Р	Credit
Course Code: - UELN0551	-	-	2	1

#### LAB Pre-Requisite:

Digital system design, Skill of C programming with suitable IDE, Basics of electronics (Bread boarding, soldering, testing) etc.

### LAB Description:

This lab prepares students to develop thinking process to solve engineering problems by application of microcontrollers in innovative manner. The group of students not more than 3 should identify Industry, Medical, Social, Safety, security, problems, perform requirement analysis. After interactions with course coordinator and based on comprehensive literature survey/need analysis, the student shall identify the title and define the aim and objectives of micro-project. As per requirements the group should develop specifications of final outcome of the project. The students should think critically and undertake design of the project with skills available with them to meet the requirements and specifications. The group is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and submit the proposal within first week of the semester. The student is expected to exert on design, development and testing of the proposed work as per the schedule. The working model of the project should be demonstrated for internal submission.

Completed micro project and documentation in the form of micro project report is to be submitted at the end of semester. The project should complete in 12 weeks including field trails if any.

The probable areas of the project work (but not only restricted to, Industry, medical field, Biotechnology, renewable energy utilities, biomedical engineering, accident prevention, , smart city, smart transportation.

### **Course Objectives:**

1. Evaluate needs of industry.

2. Identify suitable problem that can be solved using Microcontroller knowledge and basic knowledge of electronics engineering and C programming.

3. Design and implement the solution using hardware / software or both

- 4. Testing of the implementation
- 5. Write project report as per standard format

Course	e Learning Outcomes:					
CO	After the completion of the course the student will	Bloom's Cognitive				
	able to	Level	Descriptor			
CO1	<b>Identify</b> industry problem that can be implantable using microcontroller and skills like, C Programming, basics of electronics (components soldering and testing using test equipment)	II	Evaluating			
CO2	<b>Analyze</b> and build logical/ mathematical/ mechanical model of the project.	IV	Analyzing			
CO3	<b>Design</b> / simulate the model/ project work	Ι	Designing			
<b>CO4</b>	Implement the project using resources available in pro- ject LAB	V	Creating			
CO5	<b>Develop</b> comprehensive report on project work as per prescribed format	III	Applying			

CO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO 9	PO1 0	PO1 1	PO12
CO1		3				2						1
CO2	2											
CO3			3				2					
<b>CO4</b>					3							
CO5									2	3		
<b>Геасhe</b> Гwo co	mpone	ssment:	n Semes		luation	(ISE),	and one	e End Se	emeste	r Exam	ination	(ESE) hav
		Asse	essment						Mark	S		
		]	[SE						50			

<b>Fitle</b> of	f the C	Course	: Com	puter	Arch	itectu	re and	Oper	ating		L	Т	Р	C	redit
System				•				•	0		4	-	-		4
		: UEL	N0601	1											
Course	e Pre-l	Requis	ite:							•					
Numbe	r syste	em bas	ics, Fu	ndam	entals	of Dig	gital D	esign,	Boolea	ın Logi	c Sin	plific	atior	n and (	Combi
nationa	l Logi	c Desi	gn, M	SI dev	vices,	Seque	ntial L	logic I	Design,	Semio	condu	ctor N	<b>Mem</b>	ories,	Desig
using H	IDL, C	Comput	ter fun	damei	ntals, N	Microp	process	sor, Pro	ogramn	ning sk	ills,				
Course															
This co							-	•				•	-		
Genera			•	ng sys	stem f	eature	s like	multi	progra	mming	, pro	cess 1	nana	igemen	nt, an
memor	*														
Course															
1. To d									Logic	Unit.					
2. To d	•	-					proces	ssor.							
3. To g															
4. To st															
5. To il															
6. To c					ory ma	inagen	nent sc	nemes							
Course					£41		41 4	J 4				Blooi			
CO		r the c			i the c	course	the st	udent		101				rintor	
CO1		should be able to level Descriptor													
COI	Design and implement various blocks of Arithmetic Logic Unit									V	Τ		Crea	ating	
<b>CO2</b>		gn and						ocessor	•	V				reating	
<b>CO3</b>		marize			-	<u> </u>				I	Ι			tandin	0
<b>CO4</b>		ain the								I				tandin	ıg
CO5		rate Cl												tandin	ıg
CO6		pare th	e vario	ous me	emory	manag	gemen	t scher	nes	Γ	V	Analysing			
CO-P(	-														
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	P(		PSO	PSO
CO1	1	2	<b>3</b>	4	5	6	7	8	9	10	11	12	,	1	2
$\frac{CO1}{CO2}$			2												
CO2 CO3	2		2												
<u>CO3</u>	2														
C04 C05	2														
<u>CO5</u> CO6	2														
		_													
Assess Teache															
Two co				nastar	Evolu	intion	(ISE)	Ono W	lid Son	nastar	Evom	inatio	n (M	SE) of	nd one
End Se	-						· · · ·						· ·	SE) al	
	mester		sessm		5) navi	ing 20	/0, 50/	o anu .	3070 W	-	<u> </u>	livery	y.		٦
		AS	ISE 1	ent				Marks 10							-
			MSE							30					-
			ISE 2				_			<u> </u>					-
			ISE Z							10	,				_

ISE 1 and ISE 2 are based on assignment/declared test/quiz etc.

ESE

MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% Weightage for course content (normally last three modules) covered after MSE.

50

Course Contents:	
Unit 1:Arithmetic Unit Design.	8Hrs.
Fixed point arithmetic: Byte and word, Adders, Subtracters And Multipliers: Booth's	
algorithm, Robertson's algorithms, combinational array multiplier. 32/64 bit floating	
point arithmetic :(IEEE 754 format), introduction to pipeline processing.	
Unit 2:Processor Design	6Hrs.
Introduction, Hard wired control, , GCD processor Design, Design of Control unit	
for accumulator based CPU, DMA controller, Two's compliment Multiplier control	
unit design, , Micro programmed control ,Micro Instruction format	
Unit 3:Fundamentals Of OS And System Software	4Hrs.
Overview of all system software Operating system- I/O Manager- Assembler-	
Compiler- Linker- Loader, OS services and components, multitasking,	
multiprogramming, time sharing, buffering, spooling	
Unit 4:Process And Thread Management	6Hrs.
Concept of process and threads, process states, process management, context switch-	
ing, interaction between processes and OS, multithreading.	
Unit 5:Concurrency Control	7Hrs.
Concurrency and race conditions, mutual exclusion requirements, s/w and h/w solu-	
tions, semaphores, monitors, classical IPC problem and solutions, Deadlocks -	
characterization, detection, recovery, avoidance and prevention	
Unit 6:Memory Management	6Hrs.
Memory partitioning , swapping, paging, segmentation, virtual memory - Concepts,	
Overlays, Demand paging, Performance of demand paging , page replacement algo-	
rithm, Allocation algorithms	
Textbooks:	
1. J.P. Hayes "Computer Architecture and Organization" McGraw Hill publication.	
2. Silberschatz & Galvin," Operating System Concepts", VIII Wiley 2014.	
References:	
1. William Stallings ,"Operating System: Internals & Design Principles', Prentice Ha	all of India.
2. Milman Milenkovic," Operating systems, concept &design"	
Unit wise Measurable students Learning Outcomes:	
Unit 1: Student should be able to Design and implement various blocks of ALU	
Unit 2: Student should be able to Design and implement control unit and processor	•
Unit 3: Student should be able to Summarize overview of operating system.	
Unit 4: Student should be able to Explain the process management and issues.	
Unit 5: Student should be able to Illustrate Classical IPC problems and solutions.	
Unit 6: Student should be able to Compare the various memory management scher	nes.

Title of the Course: Digital Signal Processing Course Code:UELN0602	L	Т	Р	Credit
	3		_	3

**Course Pre-Requisite:** signals and systems, sampling theory, Fourier analysis etc.

**Course Description:** The signal for processing is mathematically modelled as a function or a sequence of numbers that represent the state or behaviour of a physical system. The examples of the signals range from speech, audio, image and video in multimedia systems, electrocardiograms in medical systems (ECG/EKG), to electronic radar waveforms in military. Signal processing is concerned with the representation, transformation, and manipulation of signals and the information they contain. For example, we may wish to remove the noise in speech to make it clear, or to enhance an image to make it more natural. Signal processing is one of the fundamental theories and techniques to construct modern information systems. During the last half century, lots of theories and methods have been proposed and widely studied in digital signal processing. In this semester, we only study the fundamentals of discrete-time signals and systems. The course content includes the concept and the classification of discrete-time signal, representations of signals in time, frequency, z- and discrete frequency domains, representations and analyses of systems, and filter designs.

#### **Course Objectives:**

In this course, we will mainly study the following topics: signal representation in time domain, Fourier transform, sampling theorem, linear time-invariant system, discrete convolution, z-transform, discrete Fourier transform, and discrete filter design.

#### After completing the course, the students should be able to understand

1. How to analyze a given signal or system using tools such as Fourier transform and z-transform

2. What kind of characteristics should we analyze to know the property of a signal or system

3. How to process signals to make them more useful

4. How to design a signal processor (digital filter) for a given problem.

Course L	arning Outcomes:		
CO	After the completion of the course the student	Bloom	's Cognitive
	should be able to	level	Descriptor
CO	1 Demonstrate DFT and Wavelet Transform	II	Applying
CO	2 Design and implement IIR and FIR filters using simulation tools	V	Designing
CO	3 Explain architecture of DSP processors	II	Understanding
CO	4 Explain realization of multi-rate filters	II	Understanding

#### **CO-PO Mapping:**

0-101	mappi	ig.												
CO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
РО														
CO1	2	1	1	1	1	1	1		1		1			
CO2	1	2	1	3	1						1	1	2	
CO3	1	3	2	2	1	1	2			1	2	1	1	
CO4	1	1	2	1										
CO5	1	1	1	1	1	1	2	1	1	1	1	3	3	

#### Assessments :

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% Weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1: Discrete Fourier Transform & FFT Algorithms:	076 <b>Hrs.</b>
Overview of DFT, Fast Fourier transform algorithms – Radix -2 DIT, DIF, Filtering of	
long duration sequences using overlap-Add and Overlap-save algorithm.	
Unit 2: wavelet Transform :	07 Hrs.
Fourier Transform and its limitations, short time Fourier transform, continuous wavelet Transform, Discretization of the continuous wavelet Transform, Multi resolution Ap- proximations; wavelet and Scaling function coefficients, Orthogonality of compactly sup- ported wavelets, Biorthogonal decomposition, harr wavelets, the daubechies wavelets construction, denoising using wavelets, perfect reconstruction filter bank design using walelets.	
Unit 3: FIR Filter Design :	07 Hrs.
Characteristic of FIR filter , properties of FIR filter , type of FIR filter Fourier series method, frequency sampling , Fourier series & windowing method.	
Unit 4: IIR Filter Design:	06 Hrs.
Analog filters approximations Butterworth filters, Chebyshev filters mapping of s-plare to 2- plare ,filter stability, characteristics of discreate time IIR filter , Design of IIR using Impulse Invariance Method , Bilinear Z- Transform method, Placement of poles & zeros , Freqency Transformation.	
Unit 5:Realization of filter :	9 Hrs.
FIR and IIR filter realization in cascade form and parallel form, effect of finite word length on redirection of filter. Introduction to DSP processor 67XX: Introduction, TMS320C67XX Architecture, Functional Units, pipelining, Registers, Addressing modes.	
Unit 6: Multi-rate digital signal processing :	05 Hrs.
Need of Multirate digital signal processing, decimation by factor D, two stage decimater, interpolation by factor I, two stage Interpolator, sampling rate conversion by initial factor I by D, application of multirate signal processing.	
<b>Textbooks:</b> 1. John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principles, Algorith plications", Fourth Edition, Pearson Education / Prentice Hall, 2007.	nms & Ap-
<b>References:</b> 1. Emmanuel C. Ifeachor, & Barrie. W. Jervis, "Digital Signal Processing", Second Edition, P cation / Prentice Hall, 2002.	earson Edu-
2. Sanjit K. Mitra, "Digital Signal Processing – A Computer Based Approach", Tata Mc Gra 2007.	w Hill,
3. A.V.Oppenheim, R.W. Schafer and J.R. Buck, "Discrete-Time Signal Processing", 8th Ind Pearson, 2004.	lian Reprint,
4. Andreas Antoniou, "Digital Signal Processing", Tata Mc Graw Hill, 2006.	
Unit wise Measurable students Learning Outcomes:	
1. Comprehend the principles of wavelet transform, DFT and FFT.	
2. Apply the fundamentals of DSP to analyze the performance of FIR and IIR filter design	
<ol> <li>Apply the fundamentals of DSF to analyze the performance of FIK and IIK filter design</li> <li>Compare and contrast difference between FIR and IIR filter design.</li> <li>Design the decimation and interpolation of circuits for DSP</li> </ol>	

Title of	the Cou	urse: I	Data S	tructu	ires &	Algor	ithms			L	T	P	0	Credit		
Course	Course Code: UELN0603									3	-	-		3		
Course	Pre-Re	quisit	e: Stuc	lent sh	ould h	ave kn	owled	ge of B	Basics	in C/C	++ F	rogram	ming, Da	ata types		
in C/C+	-+.															
Course	Descrip	otion:	This c	ourse	gives a	a intro	oductio	on to d	ata ty	pes, al	gori	thms to	access	different		
data ty	pes, con	plexit	ty invo	olved i	n diffe	erent d	lata ty	pe alg	orithr	ns, dif	erei	nt flavo	urs of da	ata		
types.																
Course	Objecti	ives:														
1. To p	rovide tl	he stud	lent w	ith a s	solid fo	oundat	ion in	Engine	eering	. Fund	amer	ntals &	program	ming re-		
	o solve l															
	troduce															
	nderstan															
	ain the s												olems.			
5. To in	troduce	the co	ncepts	of nor	n linea	r data s	structu	res & s	search	ing tec	hniq	ues.				
Course	Learni	ng Ou	tcome	s:												
,										1						
CO	After t	he con	npletio	on of t	he cou	rse th	e stud	ent sho	ould b			's Taxor				
	able to									lev		Descriptor				
CO1	Explai	n the c	oncep	ts of ba	asic da	ta stru	cture c	peratio	ons	II		Understand-				
												ing'				
CO2	Apply 1	the Alg	gorithr	ns to A	Add, de	elete, s	ort, an	d searc	h for	III		Applying				
	data str	ucture	s like .	Array,	linked	list, S	tack a	nd Que	ue.							
CO3	Evalua	te the	perfor	mance	of alg	orithm	s for n	nanagii	ng the	V	V Evaluating					
	data structure.															
<b>CO4</b>	Illustra	te the	conce	pt of t	rees, gi	raphs a	and sea	irching	tech-	II		Understanding				
	niques.															
CO-PO	Mappi	ng:														
		<b>ð</b> '														

#### CO **PO1** PO PO PO PO PO PO PO PSO1 PO PO PO PO 2 5 7 9 12 3 4 6 8 10 11 2 **CO1** 3 CO2 **CO3** 2 2 **CO4**

## Assessments :

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% Weightage for course content (normally last three modules) covered after MSE.

Course Contents: Unit 1: Introduction & Overview Arrays, Records	6 Hrs.
Introduction to theory of data structures & its data types, Algorithms: complexity, time	0 111 5.
space trade-off with example. Introduction, linear arrays, representation of linear array in	
memory, traversing linear arrays, inserting & deleting, Sorting: bubble sort, searching: lin-	
ear search, binary search, Multidimensional arrays,	
Unit 2:Pointers	6 Hrs.
Pointers: pointer arrays, Records: Record structures, representation of records in memory,	0 111 5.
parallel arrays, matrices, sparse matrices.	
Unit 3: Linked Lists	8 Hrs.
Introduction, linked lists & its representation, Traversing & searching a linked list, memory	0 111 5.
allocation, Garbage collection, insertion & deletion of nodes of linked list, header linked	
list, two-way lists, programming problems.	
Unit 4: Stacks & Queues:	6 Hrs.
Introduction to stacks, stack as an Abstract Data type, representation through Arrays &	0 111 50
linked lists ,Applications of stacks , stacks & recursion, Queue as an abstract data type rep-	
resentation, circular, double ended, priority, Quicksort ,application of queues.	
Unit 5: Trees	8 Hrs.
Binary Tree: introduction, types, definition, properties, representations, operations, binary	
tree traversal, reconstruction, counting number of binary trees, applications. Advanced	
trees: AVL trees or height balanced trees, representation operation, Threaded binary trees,	
Expression trees. Multiway trees: trees, multiway search trees, B+ trees, Heaps, construc-	
tion of a Heap.	
Unit 6: Graphs	6 Hrs.
Introduction, Graph theory terminology, sequential representation of graphs: Adjacency	
Matrix, Path matrix, Warshall's Algorithm, shortest paths, linked representation. Opera-	
tions, Traversing, Posets, Topological sorting, Hashing, Hash functions, collision, chaining	
Textbooks:	
1.Seymour Lipschautz - 'Data structures' - Shaum's outlines - Tata McGraw Hill	
2.ISRD group – 'Data structure using C ' Tata McGraw Hill Reference Books	
References:	
1.Langsam, Augenstein, Tenenbaun – 'Data structure using C & C++ ' - PHI	
2.Mark Allen Weiss- 'Data structure & algorithm analysis in C'- 2nd edition –Pearson Educa	ation
(LPE)	
3.M.T. Goodrich, R. Tamassia, D. Mount- Data Structures & Algorithms in C++- Wiley Pub	lication
4.A.N. Kamthane-" Introduction to Data structures in C"- Pearson Education (LPE)	
5.Data structure – A programming Approach with C-D.S Kushawaha, A.K.Misra-PHI Publi	
6. Data structures – A pseudocode Approach with C- R.F.Gilberg, b.a. forouzan-Cengage Lea	rning.
Unit wise Measurable students Learning Outcomes:	
1. Student would be able to explain what is the structure of data type and complexity involve	
2. Student would be able to explain the structure of array, records and pointers and memory a	llocatio
of these structures.	, •.
3. Student would be able to explain the structure of linked list its advantages and would able	to write
algorithms for it.	11 11
4. Student would be able to explain the structure of Stacks and Queues its applications and w	ould able
to write algorithms for it.	
5. Student would be able to explain the structure of Trees its applications and would able to v	write al-
gorithms for it.	
	write
6. Student would be able to explain the structure of Graphs its applications and would able to	
6. Student would be able to explain the structure of Graphs its applications and would able to algorithms for it. 7. Student would be able to explain the concept of hashing and different techniques involved	in it

Title of Micro	contr	oller	Archi				gram	ming			L 3	T -	Р -	Credit 3		
Code:																
Course Binary				Jumbe	er svste	-ms an	d aritl	hmetic	Basic	rs of C	nrogra	mmina	T			
Course				tuniot	<i>и вув</i> и	un an	la urre	innerie,	Dusit	<u>,5 01 C</u>	progra		2			
														program-		
														architec-		
														posure to velopment		
environ														ciopinent		
		1	0	0	2	,	1	5	11	L						
Course																
1. To un																
2. To de 3. To un									semhl	v lanou	age en	hedde	rd C			
													lications	using		
			vare pla									11		0		
Course	Lea	rning	Outco	mes:												
CO			comp	letion	of th	e cou	rse th	ie stud	lent s	hould			's Cogn			
	able											evel	Descrip			
CO1			igital s	·		-					2		Underst	-		
CO2		-	rchitec						~ .		2		Underst	J		
CO3			ing in a	assem	bly lar	iguage	Embo	edded (	to m	eet sys	- 3	3 Applying		ıg		
<b>CO4</b>		1	oplicati	ons or	n Ardu	ino pla	atform	1			3		Applyir	g		
001	2011		- P	0110 01		ine pri					-		1 199 19 11	8		
CO-PC	) Maj	pping	:													
CO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2		
CO1	1															
CO2	2															
CO3		2			3											
<b>CO4</b>		1			3								3	1		
Assessi																
Teache				omosi	tor En	aluati	on (IS		a Mi	d Sam	actor E	womi	nation (	MCE)		
	-						· ·						nation (1 ts respec			
	LIIG		Assess		lation	(LDL)	<u>) 11a v 1</u>	ing 207	/0, 50	/0 and	Mar	0	is respec	Juvery.		
		1	ISE								10					
			MS					30								
			ISE								10					
			ESI								50					
													iscussio	ns etc.		
MSE: A	Assess	sment	is bas	ed on	50%	of cou	irse co	ontent	(Ñori	nally f	ïrst th	ree mo	odules)			
									ith60-	-70% V	Veight	age fo	or cours	e content		
(norma				ules)	cover	ed afte	er MS	E.								
Course				<b>.</b> .			1. 0.		<u> </u>	1		4	1.	~ 11		
Unit 1:														7 <b>Hrs.</b>		
tional lo ments:																
										-r nop	э, тпр	mp				
diagram	Case		,							ry ROI	M RA	M FP	ROM	6 Hrs.		
diagram Unit 2:			blocks	of Ar	chitec	tures:	Conce	pt of N	vicino.	ry, noi	<b>vi</b> , i\ <i>i</i> .	<b>NI, DI</b>	KOM, I	0 <b>m s</b> .		
Unit 2: EPROM	Bu I, DR	ilding AM, o	rganiza	tion o	of com	puting	system	m: Proc	cessor	, Regist	ters, A	LU, m	emory	0 1115.		
Unit 2: EPROM subsyste	Bu I, DR em, V	ilding AM, or on-Nev	rganiza wman a	tion o and H	of comp arvard	puting archit	syster ecture	m: Proc , Pipeli	cessor ine aro	, Regist chitectu	ters, Al re, RIS	LU, m SC and	emory I SISC	0 1115.		
Unit 2: EPROM	Bu I, DR em, V ture, I	ilding AM, or on-Nev	rganiza wman a	tion o and H	of comp arvard	puting archit	syster ecture	m: Proc , Pipeli	cessor ine aro	, Regist chitectu	ters, Al re, RIS	LU, m SC and	emory I SISC	0 1115.		

Unit 2. Analitation of MCC51	7 IIma
Unit 3:- Architecture of MSC51	7 <b>Hrs.</b>
8051 block diagram, Memory organization, SFR, introduction to: IO ports, Timer counters, MCS 51 Interrupts, serial communication port of MSC51	
Unit 4:- Instruction set and assembly language programming of 8051	6 Hrs.
Illustration of Addressing modes of MSC51 using suitable data transfer instructions,	
Arithmetic and logical instruction, instructions, Program flow control instructions, con-	
cept of subroutine, nested call, call instructions	
Unit 5: Embedded C programming (8 bit): Key words memory models, memory	7 Hrs.
types, data types, bit data type, pointers, functions, interrupt functions, reentrant func-	
tions, study of simple programming case studies (Minimum 2)	
Unit 6:- Unit 6: Platform based programming: software architecture, IDE study, drivers,	7 Hrs
libraries, Serial monitor, Interfacing switches, LEDs and sensors, serial communication	
using Arduino	
Text books	
1. Digital Design Morris Mano, Michael D. Ciletti, 5th edition, Pearson.	
2. The 8051 microcontroller- Architecture, programming and applications, K J	
Ayala,	
3. C programming for Arduino Julien Bayle PACKT Publishing	
Reference book	
1. Digital systems Principles and applications Ronald J Tocci, Pearson	
2. The 8051 microcontroller and embedded system using assembly and C,	
M A Mazidi, Pearson	
3. Exploring Arduino®: Tools and Techniques for Engineering Wizardry, Jeremy Blum, Wiley.	
Unit wise Measurable students Learning Outcomes:	
1. Students should be able understand concepts of digital systems basics	
2.Students should be able compare and contrast different architectures of central	
processing Unit	
3. Students should be able to develop assembly language programs using MCS 51	
4. Students should be able develop C code developed for specific architecture un-	
der consideration	
6. Students should be able develop applications using Arduino programming envi-	
ronment and ready to use hardware platforms	
Tominent and ready to use nardware platforms	

~		urse: In		ial Auto	omation	l			F	L 2	Т	P	Credi
		UOEL			• ~	**	•			3	-	-	3
			Basic K	nowledg	ge of Ser	isors and	inst	rum	entatio	n			
	e Object	tives:	are										
5				and impo	rtance	f industria	al au	itom	ation ex	stem	2		
						tic control						s	
						ng princip							SCADA
Course	e Learn	ing Out	comes	:									
						entals and						tion	
					1	s of Progra			0				
						onal block							•
$\frac{4.5}{CO}$						the stu	01 5	ř –	om's			sics.	
υ	1	hould b	-		course	the stu-		DIC	leve	<u> </u>		Desci	rintor
<u>CO1</u>		tand the			automati	on		ТТ	leve	1	T		•
CO1 CO2						ic control		II VI	r				tanding a
002		of a med						1	L			reatin	S
$\overline{\mathbf{CO}}$		tand the						TT			<b>T</b> T	nd	ton d'
CO3	SCAD		meenan	nsm and	applicat	10115-01		Π				nuers	tanding
10 PC													
	) Mapp	1.	0	d	_	f	-		h	:		;	K
<u>CO</u> CO1	a	b	c	d	e	1	g		h	i		j	N
$\frac{COI}{CO2}$													
$\frac{CO2}{CO3}$													
UUS													
CO4													
CO4 CO4													
CO4 CO4 CO5													
CO4 CO4 CO5 CO6	monts												
CO4 CO4 CO5 CO6	ments :	sment:											
CO4 CO4 CO5 CO6 Assess	er Asses		Semes	ter Eval	uation (	ISE). On	e M	lid S	emeste	er Exa	amina	ation (	MSE)
CO4 CO4 CO5 CO6 Assess Feache	er Asses	nts of In				ISE), One							
CO4 CO4 CO5 CO6 Assess Feache	er Asses	nts of In emester	Examiı			ISE), One		0% a	nd 509	% we			
CO4 CO4 CO5 CO6 Assess Feache	er Asses	nts of In emester Asses						0% a		% we			
CO4 CO4 CO5 CO6 Assess Feache	er Asses	nts of In emester Asses IS	Examii ssment					0% a	nd 509	% we Iarks			
CO4 CO4 CO5 CO6 Assess Feache	er Asses	nts of In emester Asses IS M	Examii ssment E 1					0% a	nd 509	% we Iarks 10			
CO4 CO4 CO5 CO6 Assess Feache	er Asses	nts of In emester Asses IS M IS	Examin ssment E 1 ISE					0% a	nd 509	% we farks 10 30			
CO4 CO5 CO6 Assess Ceache Wo cc nd one	er Asses omponer e End So	nts of In emester Asses IS M IS E	Examin ssment E 1 (SE E 2 SE	nation (l	ESE) ha		6, 30	0% a	nd 509 N	% we farks 10 30 10 50	ights	respec	ctively.
CO4 CO5 CO6 Assess Ceache Wo co nd one	er Asses omponen e End So nd ISE	nts of In emester Asses IS M IS E 2 are bas	Examin ssment E 1 (SE E 2 SE SE sed on	assignm	ESE) ha	ving 20%	6, 30	0% a	minar/	% we <u>Iarks</u> <u>10</u> <u>30</u> <u>10</u> <u>50</u> Grou	ights p Dis	respec	ctively.
CO4 CO5 CO6 Ssess Feachd Wo cc nd ond SE 1 a AISE: 4 ESE: A	er Asses omponen e End So and ISE Assessmo	nts of In emester Asses IS M IS E 2 are bas ent is ba ent is ba	Examin ssment E 1 SE E 2 SE sed on ased on sed on	assignm 50% of 100% c	ESE) ha nent/dec f course ourse co	lared test. content (	6, 30 /qui Noi th60	0% a iz/se rmal )-709	minar/ wei	% we farks 10 30 10 50 Grou three ghtag	p Dis p mod	respective cussic lules) cours	ons etc.
CO4 CO5 CO6 Ssess Seachd Wo co nd ond SE 1 a ASE: 2 CSE: A norma	er Asses omponen e End So nd ISE Assessme ssessme lly last	nts of In emester Asses IS M IS E 2 are basent is basent	Examin ssment E 1 SE E 2 SE sed on ased on sed on	assignm 50% of 100% c	ESE) ha nent/dec f course ourse co	lared test	6, 30 /qui Noi th60	0% a iz/se rmal )-709	minar/ wei	% we farks 10 30 10 50 Grou three ghtag	p Dis p mod	respective cussic lules) cours	ons etc.
CO4 CO5 CO6 Assess Ceache Two co nd ond SE 1 a ASE: 4 ASE: 4 SSE: A norma	er Asses omponen e End So and ISE Assessme ssessme lly last to e Conter	nts of In emester Asses IS M IS E 2 are base ent is basent is base	Examin ssment E 1 SE E 2 SE sed on ased on sed on odules)	assignm 50% of 100% c covered	ESE) ha nent/dec f course ourse co l after N	lared test. content (	6, 30 /qui Noi th60	0% a iz/se rmal )-709	minar/ wei	% we farks 10 30 10 50 Grou three ghtag	p Dis p mod	respective cussic lules) cours	ons etc. e conter ee units
CO4 CO5 CO6 Assess Feache Two co nd ond SE 1 a ASE: 4 ESE: A norma Course Jnit 1:	er Asses omponen e End So e End So so so so so so so so so so so so so so	Asses Asses IS M IS E 2 are base ent is basent for the second	Examin ssment E 1 SE E 2 SE sed on sed on sed on odules)	assignm 50% of 100% c coverec omation	ESE) ha nent/dec f course ourse co l after N	lared test. content ( Distance of the second	/qui Noi th60	0% a iz/se rmal )-709 40 %	minar/ winar/ ly first Weig	% we         farks         10         30         10         50         Grout         three         ghtage	p Dis e mod ge for of fin	cussic lules) cours rst thre	ons etc. e conter
CO4 CO5 CO6 Ssess Feache Wo cc nd on SE 1 a ASE: A SE: A norma Course Juit 1: Automa	er Asses omponen e End So e End So and ISE Assessme lly last e Conten conten tion: Fu	Asses Asses IS M IS E 2 are basent is basent i	Examin ssment E 1 SE E 2 SE sed on ased on odules) to Aut als of Ir	assignm 50% of 100% c coverec omation ndustrial	ESE) ha nent/dec f course ourse co l after N Automa	lared test content ( Date of the stand of th	/qui Nor th60 30-4	0% a iz/se rmal )-709 40 %	minar/ winar/ ly first Weig Weig	% we         farks         10         30         10         50         Grou         three         ghtage         atoma	p Dise mod ge for of fin	cussic lules) cours rst thro Evo-	ons etc. e conter ee units
CO4 CO5 CO6 Assess Ceache Swo co nd ond SE 1 a ASE: A SE: A Norma Course Juit 1: Automa ation o	er Asses omponen e End Se and ISE Assessme lly last t e Conter f Autom	Asses Asses IS M IS E 2 are basent is basent is basent is basent is basent is basent is basent as the second secon	Examin ssment E 1 SE SE sed on ased on sed on odules) to Aut als of Ir d Elemo	assignm 50% of 100% c coverec omation ndustrial ents of p	ESE) ha nent/dec f course ourse co l after N Automa rocess c	lared test content wit ISE and 3 tion, Need ontrol loop	/qui Nor th60 30-4	0% a iz/se rmal 0-70% 40 %	minar/ winar/ ly first Weig e of Au	% we         farks         10         30         10         50         Grou         three         ghtage         utoma         ds. Pr	p Dis p Dis e mod ge for of fin	respective cussic lules) cours rst thro Evo- nma-	ons etc. e conter ee units
CO4 CO5 CO6 Assess Feache Two co and one SE 1 a ASE: 4 ASE: 4 Course Jait 1: Automa ation o le Log	er Asses omponen e End So e End So and ISE Assessme seessme lly last to contention: Fur f Autom ic Control	Asses Asses IS M IS E 2 are base ent is base three mon three mon t	Examin ssment E 1 SE E 2 SE sed on sed on sed on odules) to Aut als of Ir d Elemon	assignm 50% of 100% c coverec omation dustrial ents of p	ESE) ha nent/dec f course ourse co l after M Automa rocess c ware, Int	lared test. content wit ISE and 3 tion, Need ontrol loop ernal Arcl	/qui Nor th60 30-4 1 an p, C	0% a	minar/ winar/ ly first Weigl e of Au nt Tren. . Input	% we         Iarks         10         30         10         50         Grout         three         ghtage         utoma         ds. Pr         -outp	p Dis e mod ge for of fin tion, 1 ogran ut dev	cussic lules) cours rst thro Evo- nma- vices	ons etc. e conter ee units
CO4 CO5 CO6 Ssess Feache Wo cc nd one SE 1 a ASE: A SE: A ASE: A SE: A norma Course Juit 1: Automa ation o le Log Aechan	er Asses omponen e End So e End So and ISE Assessme lly last to e Conten tion: Fu: f Autom tic Contr tical swite	Asses Asses IS M IS E 2 are base ent is base ent is base intree mon intree mon	Examine Examine E 1 E 2 SE Sed on ased on odules) to Autentials of Ir d Elemonomic oximity	assignm 50% of 100% c coverec omation ndustrial ents of p s, Hardw	ESE) ha nent/dec f course ourse co l after N Automa rocess c ware, Int es, Photo	tion, Need ontrol loop ernal Arcl pelectric se	/qui /qui Non th6( 30-4 1 an p, C hiteo	0% a iz/se rmal )-70% d rol durren cture ors ar	minar/ winar/ ly first Weig Weig e of Au nt Tren. . Input ad swit	% we         farks         10         30         10         50         Grou         three         ghtage         utoma         ds. Pr         -outp         ches,	p Dise mod ge for of fin tion, 1 ogran ut dev Enco	respective cussic lules) cours rst through Evo- nma- vices ders,	ons etc. e conter ee units
CO4 CO5 CO6 Ssess Feache Wo cc nd one Wo cc nd one SE 1 a ASE: A SE: A SE: A SE: A SE: A norma Course Juit 1: Automa ation o le Log Aecham	er Asses omponen e End Se e End Se and ISE Assessme lly last t e Conter f Autom f Autom f Autom f Autom f autom	Asses Asses IS M IS E 2 are base ent is base ent is base intree mon intree mon	Examines Examines E 1 E 2 SE Sed on ased on odules) to Autentic als of Ir d Elemones ontroller oximity	assignm 50% of 100% c coverec omation ndustrial ents of p s, Hardw	ESE) ha nent/dec f course ourse co l after N Automa rocess c ware, Int es, Photo	lared test. content wit ISE and 3 tion, Need ontrol loop ernal Arcl	/qui /qui Non th6( 30-4 1 an p, C hiteo	0% a iz/se rmal )-70% d rol durren cture ors ar	minar/ winar/ ly first Weig Weig e of Au nt Tren. . Input ad swit	% we         farks         10         30         10         50         Grou         three         ghtage         utoma         ds. Pr         -outp         ches,	p Dise mod ge for of fin tion, 1 ogran ut dev Enco	respective cussic lules) cours rst through Evo- nma- vices ders,	ons etc. e conter ee units
CO4 CO5 CO6 Ssess Feache Wo cc nd one SE 1 a ASE: A SE: A ASE: A SE: A norma Course Juit 1: Automa ation o le Log Aechan	er Asses omponen e End Se e End Se and ISE Assessme lly last t e Conter f Autom f Autom f Autom f Autom f autom	Asses Asses IS M IS E 2 are base ent is base ent is base intree mon intree mon	Examines Examines E 1 E 2 SE Sed on ased on odules) to Autentic als of Ir d Elemones ontroller oximity	assignm 50% of 100% c coverec omation ndustrial ents of p s, Hardw	ESE) ha nent/dec f course ourse co l after N Automa rocess c ware, Int es, Photo	tion, Need ontrol loop ernal Arcl pelectric se	/qui /qui Non th6( 30-4 1 an p, C hiteo	0% a iz/se rmal )-70% d rol durren cture ors ar	minar/ winar/ ly first Weig Weig e of Au nt Tren. . Input ad swit	% we         farks         10         30         10         50         Grou         three         ghtage         utoma         ds. Pr         -outp         ches,	p Dise mod ge for of fin tion, 1 ogran ut dev Enco	respective cussic lules) cours rst through Evo- nma- vices ders,	ons etc. e conter ee units
CO4 CO5 CO6 Ssess Feache Swo co nd ond SE 1 a ASE: 4 SSE: A norma Course Jnit 1: Automa ation o le Log Aecham Dutput pplicat	er Asses omponen e End So e End So and ISE Assessme lly last to content tion: Fur f Autom tic Contru- tical swir devices ions.	nts of In emester Asses IS M IS E 2 are base ent is base ent is base three mon three m	Examin ssment E 1 SE E 2 SE sed on sed on odules) to Aut als of Ir d Elemon ontroller oximity virection	assignm assignm 50% of 100% c coverec omation ndustrial ents of p rs, Hardw switche al contro	ESE) ha nent/dec f course ourse co l after M Automa rocess c vare, Int es, Photo ol valves	tion, Need ontrol loop ernal Arcl belectric se s, Motors,	/qui /qui Non th6( 30-4 1 an p, C hiteo	0% a iz/se rmal )-70% d rol durren cture ors ar	minar/ winar/ ly first Weig Weig e of Au nt Tren. . Input ad swit	% we         farks         10         30         10         50         Grou         three         ghtage         utoma         ds. Pr         -outp         ches,	p Dise mod ge for of fin tion, 1 ogran ut dev Enco	respective cussic lules) cours rst through Evo- nma- vices ders,	ons etc. e conter ee units. 7 Hrs.
CO4 CO5 CO6 Ssess Feache Wo cc nd one SE 1 a AISE: A SE: A AISE: A SE: A norma Course Juit 1: Automa ation o le Log Aecham Dutput pplicat	er Asses omponen e End So e End So and ISE Assessme lly last to e Conten tion: Fu: f Autom tic Contr tical swir devices ions.	Asses Asses IS M IS E 2 are base ent is base ent is base intree mon nts: oduction ndamenta ation, an oller: Con teches, Pr Relay D Ider and	Examin ssment E 1 SE E 2 SE sed on ased on odules) to Aut als of Ir d Elemo ontroller oximity virection	assignmation (1 assignmation 50% of 100% covered omation adustrial ents of p rs, Hardway switche al control	ESE) ha nent/dec f course ourse co l after N Automa rocess c vare, Int es, Photo ol valve	tion, Need ontrol loop ernal Arcl belectric sets, Motors, ramming	/qui /qui Nor th60 30-4 l an p, C hiteo enso , Sto	0% a	minar/ winar/ ly first Weig Weig e of Au at Tren. Input ad swit motor	% we         farks         10         30         10         50         Grou         three         ghtage         utoma         ds. Pr         -outp         ches, rs, Ex	p Dise mod ge for of fin tion, 1 ogran ut dev Encoo ample	respective cussic lules) cours rst through Evo- nma- vices ders, es of	ons etc. e conter ee units.
CO4 CO5 CO6 Ssess Feache Wo cc nd one SE 1 a ASE: A SE: A ASE: A SE: A norma Course Jnit 1: Automa ation o le Log Aechan Dutput pplicat	er Asses omponen e End Se e End Se and ISE Assessme lly last t e Conter tion: Fu f Autom tical swir devices ions.	Asses Asses IS M IS E 2 are base ent is base ent is base ent is base ent is base hree modules base hree modules chree modules poly chree modules chree modules ation, an oller: Codules chree modules poly chree modules ation, an oller: Codules chree modules ation, an oller: Codules chree modules ation, an oller: Codules chree modules ation, an oller: Codules ation, an oller and ation, an ation, ation ation, ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation ation	Examine Sement E 1 SE E 2 SE sed on ased on odules) to Aut als of Ir d Element ontroller to ximity birection	assignm assignm 50% of 100% c covered omation ndustrial ents of p s, Hardw s switche hal contro onal blo	ESE) ha hent/dec f course ourse co l after N Automa rocess c vare, Int es, Photo ol valve ck prog ning, Mu	tion, Need ontrol loop ernal Arcl belectric se s, Motors,	/qui /qui Nor th60 30-4 d an p, C hiteo enso , Ste	0% a iz/se rmal )-709 40 % d rol furrer cture ors ar epper	minar/ winar/ ly first Weig weig e of Au th Tren . Input ad swit motor	% we         farks         10         30         10         50         Grou         three         ghtage         utoma         ds. Pr         -outp         ches,         s, Ex	p Dise mod ge for of fin tion, 1 ogran ut dev Enco ample	respective cussic lules) cours rst through the pro- nma- vices ders, es of gram	ons etc. e conter ee units. 7 Hrs.

Unit 3: Timers	6 Hrs
Types of timers, Programming timers, Off-delay timers, Pulse timers, Program-	
ming examples, Counters, Timers with counters, Sequencer, Data handling	
Unit 4: Distributed Control system	7 Hrs
System Architecture Introduction Analog Control Direct Digital Control Distri- buted Control System Functional Components DCS Control Network Operator	
Console Core Architectural Components System Configuration Computers-	
Algorithms, Languages, Programmes computers-Hierarchical Control . Supervi-	
sory computer tasks and DCS configuration, DCS- System integration with PLCs and Computers	
Unit 5: Supervisory Control and Data Acquisition (SCADA)	05 H
Introduction, brief history of SCADA, elements of SCADA. Features of SCADA,	
Fundamental principles of modern SCADA systems, The SCADA software, and	
SCADA protocols Functions of RTU Comparison of the terms SCADA, DCS,	
PLC and smart Instrument.	
Textbooks:	
1.Programmable Logic Controller W Bolton 5th Edition ISBN: 978-1-85617-751-1, Elsevication 2009	er Publi
2.'Instrument Engineers' Handbook, Process Control Bela G. Liptak 4th Edition	
3. Practical SCADA for industry David Bailey Edwin Wright ISBN:0750658053, Elsevier F	Publicati
2003	
References:	
1.Understanding Distributed Processor Systems for Control. Samuel M. Herb ISA Pt tion, 1999	ublica-
2.Computer control of processes - M.Chidambaram, Narosa publishing, Reprint 201	0
3. Programmable Logic Controller Frank D. Petruzella Third Edition TaTa McGraw-	
tion, 2010	
4.Computer Based Industrial control- Krishna Kant, Prentice Hall of India. 6th Editi-	on, 200
5.Distributed computer control for industrial automation popovic and bhatkar Public Marcel Dekker, Inc. New York, NY, USA ©1990	

I lue o	f the Course: Professional Elective II	L	Т	P	Credits
Digita	Image Processing	3		-	3
	e Code: UELN0621				
Cours	e Pre-Requisite:				
Rando	m Variables, Set Theory, Signals and Systems.				
Cours	e Description:				
This c	ourse gives the students the fundamentals of digital image	processi	ing, li	near filter	ring, linea
transfo	rms, image enhancement in both spatial and frequency dom	ain; ima	ge re	constructio	on; invers
proble	ms in imaging; edge detection; feature extraction; compres	sion; wa	avelet	based in	naging an
mather	natical morphology				
Cours	e Objectives:				
1. To	provide the student with fundamentals of digital image proce	essing.			
2. To	build various Image enhancement, restoration and compress	ion tech	nique	s	
	build various Image enhancement, restoration and compress develop various Image segmentation methods, Wavelet				ical Imag
3. To					ical Imag
3. To Pro	develop various Image segmentation methods, Wavelet				ical Imag
3. To Pro	develop various Image segmentation methods, Wavelet ocessing.	based a	nd m		ical Imag
3. To Pro Cours	develop various Image segmentation methods, Wavelet occessing. e Outcomes:	based a	nd m m's C	orphologi	ical Imag
3. To Pro Cours	develop various Image segmentation methods, Wavelet occessing.         e Outcomes:         After the completion of the course the student will be able to	based a	nd m m's C De	orphologi Cognitive	
3. To Pro Cours COs	develop various Image segmentation methods, Wavelet ocessing. e Outcomes: After the completion of the course the student will be	based a Bloo level	nd m m's C De	corphologi Cognitive scriptor	
3. To Pro Cours COs	develop various Image segmentation methods, Wavelet ocessing.         e Outcomes:         After the completion of the course the student will be able to         Explain the basic elements and applications of image processing.	based a Bloo level	nd m m's C De Ur	Cognitive Scriptor Iderstandin	
3. To Pro Cours COs CO1	develop various Image segmentation methods, Wavelet         cessing.         e Outcomes:         After the completion of the course the student will be able to         Explain the basic elements and applications of image	based a Bloo level II	nd m m's C De Ur	corphologi Cognitive scriptor	
3. To Pro Cours COs CO1	develop various Image segmentation methods, Wavelet         occessing.         e Outcomes:         After the completion of the course the student will be         able to         Explain the basic elements and applications of image         processing.         Analyze image sampling and quantization requirements         and its implications.	based a Bloo level II	nd m m's ( De Ur Ar	Cognitive Scriptor Iderstandin	
3. To Pro Cours COs CO1 CO2	develop various Image segmentation methods, Waveletoccessing.e Outcomes:After the completion of the course the student will be able toExplain the basic elements and applications of image processing.Analyze image sampling and quantization requirements	based a Bloo level II IV	nd m m's ( De Ur Ar	Cognitive Scriptor Iderstandin	

# CO-PO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3							1						
CO2		3												
CO3			3										2	2
CO4					2									

## Assessments :

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/Group Discussions etc.

MSE: Assessment is based on 50% of course content (Normally first three units)

ESE: Assessment is based on 100% course content with60-70% Weightage for course content (normally last three units) covered after MSE.

Unit 1: DIGITAL IMAGE FUNDAMENTALS	6 Hrs.
Image sensing and acquisition. Basic concept of image sampling and quantization	
Representations of digital image. Spatial and gray level resolution. Zooming and	
shrinking of image. Basic relationship between pixels, Image registration tech-	
niques.	
Unit 2: IMAGE ENHANCEMENT (SPATIAL and Frequency DOMAIN)	7 Hrs.
Basic gray level transformations: image negation, log transformations, Power law	
transformations, Piece wise linear transformations. Histogram processing, Histo-	
gram equalization, Histogram matching. Image enhancement using arithmetic	
and logical operations.	
Filtering in frequency domain: obtaining frequency domain filters from spatial	
filters. Generating filters directly in the frequency domain, Low pass (smoothing)	
and High pass (sharpening) filters in Frequency domain.	
Unit 3: IMAGE SEGMENTATION	8 Hrs.
Detection of discontinuities, Edge linking and boundary detection. Threshold,	
Region oriented segmentation. Morphological Image Processing. Dilation and	
Erosion: Dilation, Structuring Element Decomposition, the Strel function, Ero- sion. Combining Dilation and Erosion: Opening and closing the hit and miss	
transformation.	
Unit 4: IMAGE COMPRESSION	6 Hrs.
Redundancies and their removal methods. Fidelity criteria. Image compression	0 1115.
models, Source encoder and decoder, Error free compression, Lossy Compression,	
JPEG 2000 Standard.	
Unit 5: COLOR IMAGE PROCESSING.	7 Hrs.
Color fundamentals, color models, RGB color model, CMY color model, HSI	,
color model. Pseudo color image processing: intensity slicing. Gray level to color	
transformation.	
Unit 6: Wavelets and Multi resolution Processing	7 Hrs.
Image Pyramids, Subband Coding, Types of Wavelet transforms.	
Multi resolution Expansions: Series Expansions .Scaling Functions. Wavelet	
Functions, Wavelet Transforms in One Dimension: The Wavelet Series Expan-	
sions .The Discrete wavelet Transform. The Continuous Wavelet Transform.	
sions .The Discrete wavelet Transform. The Continuous Wavelet Transform. Text Books:	
sions .The Discrete wavelet Transform. The Continuous Wavelet Transform. <b>Text Books:</b> 1.Rafael C. Gonzalez and Richard E. Woods, "Digital image processing", (Pearson 1)	Education
sions .The Discrete wavelet Transform. The Continuous Wavelet Transform. <b>Text Books:</b> 1.Rafael C. Gonzalez and Richard E. Woods, "Digital image processing", (Pearson 2 publication)	Education
sions .The Discrete wavelet Transform. The Continuous Wavelet Transform. <b>Text Books:</b> 1.Rafael C. Gonzalez and Richard E. Woods, "Digital image processing", (Pearson 2 publication) 2." Digital image processing" by A. K. Jain	Education
sions .The Discrete wavelet Transform. The Continuous Wavelet Transform. <b>Text Books:</b> 1.Rafael C. Gonzalez and Richard E. Woods, "Digital image processing", (Pearson 2) publication)  2." Digital image processing" by A. K. Jain <b>Reference Books:</b>	Education
sions .The Discrete wavelet Transform. The Continuous Wavelet Transform.  Text Books:  1.Rafael C. Gonzalez and Richard E. Woods, "Digital image processing", (Pearson publication)  2." Digital image processing" by A. K. Jain  Reference Books:  S. Sridhar, "Digital Image Processing", (Oxford)	Education
<ul> <li>sions .The Discrete wavelet Transform. The Continuous Wavelet Transform.</li> <li>Text Books: <ol> <li>Rafael C. Gonzalez and Richard E. Woods, "Digital image processing", (Pearson 2 publication)</li> <li>"Digital image processing" by A. K. Jain</li> </ol> </li> <li>Reference Books: <ol> <li>S. Sridhar, "Digital Image Processing", (Oxford)</li> <li>Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", (PHI)</li> </ol> </li> </ul>	Education
sions .The Discrete wavelet Transform. The Continuous Wavelet Transform. <b>Text Books:</b> 1.Rafael C. Gonzalez and Richard E. Woods, "Digital image processing", (Pearson 2 publication)  2." Digital image processing" by A. K. Jain <b>Reference Books:</b> S. Sridhar, "Digital Image Processing", (Oxford)  2) Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", (PHI) <b>Unit wise Measurable Learning Outcomes:</b>	Education
<ul> <li>sions .The Discrete wavelet Transform. The Continuous Wavelet Transform.</li> <li>Text Books: <ol> <li>Rafael C. Gonzalez and Richard E. Woods, "Digital image processing", (Pearson Publication)</li> <li>Digital image processing" by A. K. Jain</li> </ol> </li> <li>Reference Books: <ol> <li>Sridhar, "Digital Image Processing", (Oxford)</li> <li>Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", (PHI)</li> </ol> </li> <li>Unit wise Measurable Learning Outcomes: <ol> <li>Explain the basic elements and applications of image processing</li> </ol> </li> </ul>	Education
<ul> <li>sions .The Discrete wavelet Transform. The Continuous Wavelet Transform.</li> <li>Text Books: <ol> <li>Rafael C. Gonzalez and Richard E. Woods, "Digital image processing", (Pearson publication)</li> <li>Digital image processing" by A. K. Jain</li> </ol> </li> <li>Reference Books: <ol> <li>Sridhar, "Digital Image Processing", (Oxford)</li> <li>Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", (PHI)</li> </ol> </li> <li>Unit wise Measurable Learning Outcomes: <ol> <li>Explain the basic elements and applications of image processing</li> <li>Analyze image sampling and quantization requirements.</li> </ol> </li> </ul>	
<ul> <li>sions .The Discrete wavelet Transform. The Continuous Wavelet Transform.</li> <li>Text Books: <ol> <li>Rafael C. Gonzalez and Richard E. Woods, "Digital image processing", (Pearson 2 publication)</li> <li>Digital image processing" by A. K. Jain</li> </ol> </li> <li>Reference Books: <ol> <li>Sridhar, "Digital Image Processing", (Oxford)</li> <li>Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", (PHI)</li> </ol> </li> <li>Unit wise Measurable Learning Outcomes: <ol> <li>Explain the basic elements and applications of image processing</li> <li>Analyze image sampling and quantization requirements.</li> <li>Design and implement two-dimensional spatial and frequency filters for image endersity of the state of the s</li></ol></li></ul>	
<ul> <li>sions .The Discrete wavelet Transform. The Continuous Wavelet Transform.</li> <li>Text Books: <ol> <li>Rafael C. Gonzalez and Richard E. Woods, "Digital image processing", (Pearson 2 publication)</li> <li>"Digital image processing" by A. K. Jain</li> </ol> </li> <li>Reference Books: <ol> <li>Sridhar, "Digital Image Processing", (Oxford)</li> <li>Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", (PHI)</li> </ol> </li> <li>Unit wise Measurable Learning Outcomes: <ol> <li>Explain the basic elements and applications of image processing</li> <li>Analyze image sampling and quantization requirements.</li> <li>Design and implement two-dimensional spatial and frequency filters for image end.</li> </ol> </li> </ul>	
<ul> <li>sions .The Discrete wavelet Transform. The Continuous Wavelet Transform.</li> <li>Text Books: <ol> <li>Rafael C. Gonzalez and Richard E. Woods, "Digital image processing", (Pearson 2 publication)</li> <li>Digital image processing" by A. K. Jain</li> </ol> </li> <li>Reference Books: <ol> <li>Sridhar, "Digital Image Processing", (Oxford)</li> <li>Malay K. Pakhira, "Digital Image Processing and Pattern Recognition", (PHI)</li> </ol> </li> <li>Unit wise Measurable Learning Outcomes: <ol> <li>Explain the basic elements and applications of image processing</li> <li>Analyze image sampling and quantization requirements.</li> <li>Design and implement two-dimensional spatial and frequency filters for image endersity of the state of the s</li></ol></li></ul>	

Title of the Course: Professional Elective II	L	Т	Р	Credit
Embedded System Programming	3	-	-	3
Course Code:UELN0622				

### **Course Pre-Requisites:**

Study of 8 bit microcontroller architecture and assembly language programming, Basics of C programming, Programming resources of microcontroller like Timer, ADC, DAC, PWM, Serial buses etc.

### **Course Description:**

This course is designed to understand concepts in developing algorithms using UML for modern embedded systems. The main focus of the course is writing effective C codes to design embedded system with due consideration to safety, as embedded systems are used in Automotive and Avionic systems. Due consideration should be given to program embedded systems to meet performance metrics. All above mentioned concepts should be practiced on ready to use hardware platform and integrated development environment for programming

### **Course Objectives:**

- 1. To understand the concepts of UML for optimized program design
- 2. To understand programming embedded system using embedded C
- 3. Write C codes to meet MISRA C standard
- 4. To describe various methods to meet safety and reliability in programming Embedded systems
- 5. To understand methods to evaluate performance and optimize the system in design
- 6. To understand Programming environment of Arduino and develop real life applications using ready to use hardware platform resources available

CO	After the completion of the course the student should be	Bloom's Cognitive			
	able to	level	Descriptor		
CO1	Illustrate use of UML for program design	2	Understanding		
CO2	Practice Embedded C to meet system requirements and to meet MISRA C standard	3	Applying		
CO3	Analysing various method to develop codes to meet safety and performance optimization	4	Analysing		
<b>CO4</b>	Develop applications on Arduino platform	3	Applying		

#### **CO-PO Mapping:**

CO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1		2	2											
CO2													3	
CO3							2							
<b>CO4</b>					3									3

#### Assessments :

## **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on Lab assignment/declared test/quiz/seminar/Group Discussions etc. MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% Weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Unit 1:- Introduction to software modelling	6 Hrs.
UML diagrams, writing use cases, Class diagrams, Class relationships, Dynamic modelling	0 111 5.
with UML, Interaction diagram, Sequence diagram, Fork and Join, Branch and merge, Ac-	
tivity diagram, State chart diagram, Dynamic modelling with structured design methods,	
Data and control flow diagram	
Unit 2:Basics of Embedded C programming	4Hrs
Software and its manifestation, Embedded C program, C building blocks, C program struc-	
ture, MISRA C guidelines for C programming	
Unit 3:- Embedded C Programming	8Hrs
Bit wise operator, Pointer variables and memory addresses, Functions, Pointers to func-	
tions, Structures, The interrupts,	
Unit 4: Platform based programming: software architecture, IDE study, drivers, libraries,	10Hrs
Serial monitor, Trigonometric C functions in, Time measure, Interfacing switches, LEDs	
and sensors, serial communication using Arduino, hardware and timer interrupts, Pro-	
gramming libraries, Memory management	
Unit 5:- Performance analysis and optimization	4 Hrs
Performance measures, Complexity analysis, Comparing algorithms, Analysing code, Ana-	
lysing algorithms, Analysing data structures, Instructions in details, Response time, Time	
loading, Memory loading, Evaluating performance, Performance optimization, Optimizing	
for power consumption	
Unit 6:- Safety, Reliability and robust design	4 Hrs.
Introduction, Failure models, safe and robust design, System functional level considera-	
tion, System architectural level consideration, Data and control faults, Power sub systems	
Textbooks:	
1. Embedded systems A contemporary design tool, James K Peckol, Wiely	
2. C programming for Arduino Julien Bayle PACKT Publishing	
References:	
1. C in depth S K Srivastava, Deepali Srivastva, BPB publication	<b>TT</b> 7'1
2. Exploring Arduino®: Tools and Techniques for Engineering Wizardry, Jeremy Blum	, Wiley
Unit wise Measurable students Learning Outcomes:	
<b>1.</b> Students should be able understand concepts of UML for algorithms development and pr	ograming
in embedded C	
2. Students should be able write embedded C codes to develop embedded systems	
3. Students should be able apply concept of safety while designing C codes using MISRA C	and reader
4. Students should be able develop applications using Arduino programming environment a	and ready
<ul><li>to use hardware platforms</li><li>5. Students should be able analyse performance of C code developed for specific architect</li></ul>	ura undar
consideration and design optimized code	ure under

Biome	f the (				onal l	Electi	ve-II					L 3	Т	Р		edit 3
Course												5	-	-		5
Course																
Basics					sics o	f diffe	erent s	ensor	s and	their v	vorkir	ng m	incin	le		
Course												- <u>ə</u> r-	morp			
Course				broad	l class	s of de	evices	and s	systen	ns. In	this c	ours	e we	will 1	orim	arilv
study s			•						•							•
elemen																
tation s									-		<i>J</i> 1					
	•							•		tial ele	ctrode	es				
										figuı			ı ba	ndwic	lth,	pre
				-	-		•••			and I						
	gering	g and	signal	lavera	aging			•								C
3.	Comp	outatio	on: inc	cludin	g data	i capti	ure an	d sign	al pro	ocessir	ıg					
4.	Syste	ms: c	omple	ete sys	stem 1	respor	ise us	ing sp	pecific	e exan	nples	(ele	ctrom	yogra	ım, p	ores
	sure s	sensor	s and	bloo	d pres	ssure	meası	ireme	nts, f	low se	ensors	and	l bloc	od flo	w m	ieas
	ureme	ents, a	nd ch	emica	ıl bios	ensor	s)									
Course	e Obje	ective	s:													
		•						-		an ph		•••				
2.										ystem						
3.						ors and	d trans	ducer	s used	d in th	e field	lof	oiom	edical	scie	nce
		's wo	•	•	•											
4.				stem t	hat su	its the	e most	for th	ne des	ired b	iomed	lical	prob	-		
	lem/a	11														
Course		<u> </u>												<u> </u>		
CO	1		ompl	etion	of the	cours	se the	studer	it sho	uld	-			nitive		
~ ~ 1		ole to										leve	1		scrip	
CO1		erstan						1	1.	0.1		II			lersta	
CO2					ne ma	thema	itical i	mode	ling o	of the		III		Ap	plyir	ng
~~ <b>^</b>		ogical					0.1	. 00	. 1 .	1.						- 1
CO3				worki	ng pr	incipl	e of d	ifferei	nt bio	medi-		II		Unc	lersta	and
CO 1		ensor			1 .	1		C	1 1	• 1					1 .	
CO4						cal s	ystem	for 1	the d	esired		III		Ap	plyir	ng
CO DO		ication		robler	n											
CO-PC				DO	DO	DO	DO	DO	DO	DO	DO	DO	DC		000	٦
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO		SO2	
CO1	1	2	5	-		1	/	0		10	11	12				1
CO2	1	3	3		2	1							1	1		1
CO3	2		5										-			1
CO4	-			2		1			1		2		1			1
Assess	ments	•		-					1		-		-			
Teache			nt:													
Two co				lemes	ter Ev	aluati	on (IS	E). O	ne Mi	id Sen	nester	Exa	mina	tion (	MSE	5
and one	-						-	,								· ·
			ssess			(			,			ırks	0	<u>r</u>		- ) -
		-	ISE									0				
			MS									0				
			ISE									0				
			ES									0				
	110				aaian		/1 1	1 .			-	-	D.			ta
ISE 1 a	nd IN	ヒノan	e hase	ed on a	assion	ment	decta	red te	st/ani/	z/semi	nar/G	rom	)   )194	2118810	ns ei	IC .
ISE 1 a MSE: /															ons et	IC.
ISE 1 a MSE: A ESE: A	Assess	ment	is bas	ed on	50%	of cou	urse co	ontent	(Nor	mally	first t	hree	mod	ules)		

	8 Hrs.	Course Contents: Unit 1:Basic cell physiology; human bones, Systemic physiology: Neuromus
<ul> <li>Blood and lymph; Circulatory system; Respiratory and Cardiovascuar system, Gastro-intestinal system; Kidney and excretory system; Sensory systems- visual, auditory, vestibular; Endocrine- pituitary, adrenal, pancreas, Clinical and technological implications</li> <li>Unit 2: Electro-Mathematical modelling of biological system and computational oroblems in the context of biology and medicine with emphasis on deterministic nodels. Review of limits, derivatives, and graphing of functions, Function maxima and minima. Integration. Linear ordinary differential equations. Second order parial differential equations. Transform techniques. Difference approximations, discrete models, and numerical solutions, error analysis. Introduction to algorithmic or biology and medicine.</li> <li>Unit 3: Introduction to biosensors and classification. Different transduction for biology of recognition layers. Examples and functioning of</li> </ul>	01115.	Unit 1Dasic Cen physiology. Indinan Jones. Systemic Direstology. Inchronins
<ul> <li>ar system, Gastro-intestinal system; Kidney and excretory system; Sensory systems- visual, auditory, vestibular; Endocrine- pituitary, adrenal, pancreas, Clinical and technological implications</li> <li><b>Unit 2:</b> Electro-Mathematical modelling of biological system and computational oroblems in the context of biology and medicine with emphasis on deterministic nodels. Review of limits, derivatives, and graphing of functions, Function maxima and minima. Integration. Linear ordinary differential equations. Second order parial differential equations. Transform techniques. Difference approximations, discrete models, and numerical solutions, error analysis. Introduction to algorithmic or biology and medicine.</li> <li><b>Unit 3:</b> Introduction to biosensors and classification. Different transduction for biology of recognition layers. Examples and functioning of</li> </ul>		
<ul> <li>ems- visual, auditory, vestibular; Endocrine- pituitary, adrenal, pancreas, Clinical and technological implications</li> <li>Jnit 2: Electro-Mathematical modelling of biological system and computational or biology and medicine with emphasis on deterministic nodels. Review of limits, derivatives, and graphing of functions, Function maxima and minima. Integration. Linear ordinary differential equations. Second order parial differential equations. Transform techniques. Difference approximations, discrete models, and numerical solutions, error analysis. Introduction to algorithmic for biology and medicine.</li> <li>Jnit 3: Introduction to biosensors and classification. Different transduction for biology and functioning of second function and functioning of second function and functioning of second function.</li> </ul>		
<ul> <li>and technological implications</li> <li>Jnit 2: Electro-Mathematical modelling of biological system and computational for biology and medicine with emphasis on deterministic models. Review of limits, derivatives, and graphing of functions, Function maxima and minima. Integration. Linear ordinary differential equations. Second order parial differential equations. Transform techniques. Difference approximations, discrete models, and numerical solutions, error analysis. Introduction to algorithmic for biology and medicine.</li> <li>Jnit 3: Introduction to biosensors and classification. Different transduction for biology and functioning of functioning of functioning of functioning of functioning of functioning of function in the comparison of the compar</li></ul>		
<ul> <li>Jnit 2: Electro-Mathematical modelling of biological system and computational or biology and medicine with emphasis on deterministic nodels. Review of limits, derivatives, and graphing of functions, Function maxima and minima. Integration. Linear ordinary differential equations. Second order parial differential equations. Transform techniques. Difference approximations, discrete models, and numerical solutions, error analysis. Introduction to algorithmic or biology and medicine.</li> <li>Jnit 3: Introduction to biosensors and classification. Different transduction for the biosensors and classification. Different transduction for the biosensors and functioning of functioning of formation in sensors. Types of recognition layers. Examples and functioning of formation is the biosensors and functioning of formation.</li> </ul>		
broblems in the context of biology and medicine with emphasis on deterministic nodels. Review of limits, derivatives, and graphing of functions, Function maxima and minima. Integration. Linear ordinary differential equations. Second order par- ial differential equations. Transform techniques. Difference approximations, dis- trete models, and numerical solutions, error analysis. Introduction to algorithmic or biology and medicine. Unit 3: Introduction to biosensors and classification. Different transduction nechanisms in sensors. Types of recognition layers. Examples and functioning of	6 Una	
nodels. Review of limits, derivatives, and graphing of functions, Function maxima and minima. Integration. Linear ordinary differential equations. Second order par- ial differential equations. Transform techniques. Difference approximations, dis- crete models, and numerical solutions, error analysis. Introduction to algorithmic or biology and medicine. Unit 3: Introduction to biosensors and classification. Different transduction nechanisms in sensors. Types of recognition layers. Examples and functioning of	0 1118.	
<ul> <li>and minima. Integration. Linear ordinary differential equations. Second order parial differential equations. Transform techniques. Difference approximations, discrete models, and numerical solutions, error analysis. Introduction to algorithmic or biology and medicine.</li> <li>Jnit 3: Introduction to biosensors and classification. Different transduction for the production of the production is the production of the production of the product of the</li></ul>		
ial differential equations. Transform techniques. Difference approximations, dis- rete models, and numerical solutions, error analysis. Introduction to algorithmic or biology and medicine. Unit 3: Introduction to biosensors and classification. Different transduction nechanisms in sensors. Types of recognition layers. Examples and functioning of		
erete models, and numerical solutions, error analysis. Introduction to algorithmic For biology and medicine. Unit 3: Introduction to biosensors and classification. Different transduction 6 Hr nechanisms in sensors. Types of recognition layers. Examples and functioning of		
Or biology and medicine.Introduction to biosensors and classification. Different transductionJnit 3: Introduction to biosensors and classification. Different transduction6 Hrnechanisms in sensors. Types of recognition layers. Examples and functioning of6 Hr		
<b>Jnit 3:</b> Introduction to biosensors and classification. Different transduction 6 Hr nechanisms in sensors. Types of recognition layers. Examples and functioning of		•
nechanisms in sensors. Types of recognition layers. Examples and functioning of	6 Hrs	
	0 1115.	
ATTENENT TYPES OF DIOSCHSOTS INCIDENTE, DUI NUL LESITICICU IU. UDIICAL INCUMINICAL I		
		(e.g. micro cantilever, piezo, SAW, etc), electrochemical, FET, thermal, etc. Ana
		lytical modelling of biosensors.
	8 Hrs.	Unit 4: Medical measurands; Sensor characteristics and design for measure
	0 1113.	ment of medical parameters like ECG, arterial flow, blood pressure, heart sounds
		Bio potential amplifiers, charge amplifiers and other interfaces; Signal condition
		ing and display. Medical imaging considerations; X-rays, X-ray tube design, film
		and detector design; CT - scanners: generations and basic algorithms. Elements of
		electrical safety; Built-in safety features for medical instruments.
	6 Hrs.	Unit 5:Instrumentation for clinical laboratory: Measurement of pH value of
v 1	0 1115.	blood, ESR measurements, Hb measurement, oxygen and carbon dioxide concen-
		tration in blood, GSR measurement, polarographic measurements, computer appli-
		cations.
	6 Hrs.	Unit 6: System Development for the Biomedical Application
	<u> </u>	Text books :
. Arthur C. Guyton: Textbook of Medical Physiology, 8th ed, Prism Books (Pvt) Ltd &	:d &	
		W.B. Saunders Company, 1991.
2. W.F.Ganong, Review of Medical Physiology, 13th ed., Prentice-Hall, 17 th edition, 1995	ı, 1995	
3. J. D. Murray, Mathematical biology: an introduction, 3rd ed., New York, Springer 2002.		
R. W. Shonkwiler, Mathematical Biology: An Introduction with Maple and Matlab,		
		Springer 2009.
		5. E. Kreyszig. Advanced Engineering Mathematics, 9th Ed., Wiley, 2006
		Reference books:
.Handbook of biosensors and biochips: Marks, Robert Set al.: John Wiley, 2007		
2. Engineering biosensors, kinetics and design applications by AjitSadanaSan Diego, Aca-	o, Aca-	
		demic Press, 2002
. Biosensors by Tran Minh Canh. London. Chapman and Hall, 1993.		3. Biosensors by Tran Minh Canh. London. Chapman and Hall, 1993.
Biosensors: theory and applications by Donald G. Buerk. Lancaster: Technomic Pub.,	'ub.,	4. Biosensors: theory and applications by Donald G. Buerk. Lancaster: Technomic
		1993.
		Unit wise Measurable students Learning Outcomes:
$\mathbf{c}$		
•		4 Introduction to biomedical sensor
System Development for the Biomedical Application		<ul><li>4 Introduction to biomedical sensor</li><li>5 Instrumentation for clinical laboratory</li></ul>

					ude En	hance	ment v	vith Ve	edic Ma	aths	L	Т	Р	Cre	edit
			e:UEL		M	41	<b>4</b> ° <b>A</b> -		4 1 .		2	-	-	-	•
					sic Ma	tnema	tics, A	rithme	tic calc	culatio	ons				
			ription		a stard	f V		a t la a	1 fa and				of out	it de f	
				entrance		y or v	earc m	atns an	a locus	ses on	prepa	ration	or api	itude fo	or com-
1			ctives:												
				hnique	s of Ve	die Ma	othe								
								rohlem	s quick	lv					
									ation p		ns				
				nd con					inter p						
Cou		Lear	ning O	utcom	es:										
CO After the completion of the course the student Bloom's C															
		should be able to level												escripto	
	CO											Und	erstandi	ng	
-	~ ~			ogical		<u> </u>									
	CO			-	ies to	solve a	arithme	etic and	l logica	ıl	IV		App	lying	
-	CO		easonin			1		<b>T</b> /			11.7				
	CO				ues to	solve	e Data	Inter	oretatio	n	IV		App	lying	
r	CO		roblem	s and co	mmu	and not		offostiv	valur.		III		A		
	CO	4 A	naryze	and co	mprene	end pas	sages	enecuv	ely		111		Analyzing		
CO	ΡΛ	Man	ping:												
		PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO	PSO	PSO2
PC	-	1	102	100	10.	100	100	107	100	107	10	11	12	1	1501
C		2	1												
C		-	-	2										2	
C				2										2	
C				2							2			2	
	_												1		l
Ass	essm	ents	:												
			As	sessme	nt					l	Marks				]
				ESE							100				
ESF	E: As	sessr	nent is	based of	on 1009	% cour	se cont	ent (Ol	ojective	Test)					-
Cou	irse	Cont	ents:												
Uni	tI:	Vedi	c Math	18											
									irven,					Hrs.	
			1 /			1	,		am), I	Divisio	on (N	likhila	ım,		
				i), Spee					Maths						
				cal Rea		-	-		Coder	c n d	Dalat	ional	<b>n</b> a   <i>F</i>	Ura	
• •			-						Codes Ratio,				• ·	Hrs.	
			-						erages e	-	nuon	anu r	CI-		
				asoning			Sounth	ug, AV	Juges (						
						gumen	ts. Eva	aluating	g and d	listing	uishin	g ded	uc-   5	Hrs.	
									n: Simp						
						•		•	leans o			<b>.</b>			
			•	•	•			•	stimony		•				
		-				-			f infere	-					
				pretati						,					
Sou	rces,	acqu	isition	and cl	assifica	tion of	f Data,	Quanti	itative a	and Qu	lalitati	ive Da	ata, 4	Hrs.	
	-	-					-		chart, T			nd Li	ne-		
cha	rt) an	d ma	pping	of Data	, Data	Interpr	etation	, Data a	and Go	vernar	nce.				

Unit 5: Verbal Ability and comprehension	5Hrs.					
Jumbled Paragraphs, Summary/Inference of short paragraph, Reasoning type	51115.					
comprehension, Vocabulary based comprehension, Thought based, fact verifica-						
tion, opposite meaning type comprehension.						
Textbooks:						
1. How to Prepare for Quantitative Aptitude (English, McGraw Hill Education	, Arun Sharma)					
References:						
• Verbal Ability and Reading Comprehension, Pearson Publications by Nishit K Sinha						
How to prepare for Data Interpretation, Pearson Publications by Arun Sharr	na					
Quantitative Aptitude by R.S. Aggarwal						
Unit wise Measurable students Learning Outcomes:						
1. The student will be able to explain basics of Vedic Maths.						
2. The student will be able to apply techniques to solve logical reasoning probl	ems.					
3. The student will be able to explore techniques to solve data interpretation pr	oblems.					
4. The student will be able to analyze and comprehend passages effectively.						

Course Code: UELN0641 -	-	2	1

#### LAB Pre-Requisite:

Microcontroller hardware design, program design, IDE programming, Basics of electronics system design, Matlab/ C programming etc.

### LAB Description:

This lab prepares students to develop thinking process to solve problems of industry, Medical field, Automotive and avionic industry, Social problem, security issues, AI based solutions etc.by application of science and engineering in innovative manner. The group of students not more than 3 should identify problems, perform requirement analysis. After interactions with course coordinator and based on comprehensive literature survey/need analysis, the student shall identify the title and define the aim and objectives of mini-project. As per requirements the group should develop specifications of final outcome of the project. The students should think critically and undertake design of the project with skills available with them to meet the requirements and specifications. The group is expected to detail out specifications, methodology, resources required, critical issues involved in design and implementation and submit the synopsis within first week of the semester. The student is expected to exert on design, development and testing of the proposed work as per the schedule. The working model of the project should be demonstrated for internal submission and oral examination.

This LAB will help to develop sensitivity of students towards industry problems, think critically to find innovative solutions to simplify human life.

Completed mini project and documentation in the form of mini project report is to be submitted at the end of semester. The project should complete in 12 weeks including field trails if any.

At the end of project the guide should advise students to protect IP either in the form of Patent or registration of design or publish paper on work completed or participate in project competition

The probable areas of the project work (but not only restricted to): Machine automation, biomedical engineering, prosthesis, accident prevention, efficiency/cost/ time improvements, , smart city, smart transportation, Automotive Electronics, energy utility, energy harvesting, AI based solutions, cyber security, Biometrics etc.

#### **Course Objectives:**

1. Evaluate industry needs.

2. Identify suitable problem that can be solved using Electronics engineering knowledge Viz system design, Modelling, MATLAB and C programming. FPGA/ CPLD based solutions.

- 3. Design and implement the solution using hardware / software or both
- 4. Testing of the implementation
- 5. Write project report as per standard format

Course	e Learning Outcomes:		
CO	After the completion of the course the student will	Bloom's C	Cognitive
	able to	Level	Descriptor
CO1	Identify industry/ societal problem that can be implant-	III	Applying
	able using first principles of science, engineering and		
	skills like, C Programming, Modelling		
CO2	Analyze and build logical/ mathematical/ mechanical	IV	Analysing
	model of the project.		
CO3	Design / simulate the model/ project work	VI	Creating
<b>CO4</b>	Implement the project using resources available in pro-	VI	Creating
	ject LAB		
CO5	Write comprehensive report on project work as per pre-	VI	Creating
	scribed format		

CO-P	O Map	ping:											
СО	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	PO9	PO10	PO11	PO12	PSO1
CO1		3				2						1	
CO2	2												
CO3			3				2						3
CO4					3								
CO5	CO5 2 3												
<b>Teach</b> Two c	ompon	essmen ents of	Evalua			ster eva	aluatior	n (ISE),	and E	nd Seme	ster Eva	luation (	ESE)
having	g 25 ano	1 50 ma		*	ely.								
		As	sessme	nt						arks			
			ISE							25			
			SE (OE	/						50			
											and rubr		
ESE: A	Assessr	nent is	based of	on 100%	% LAB	work ł	based of	n rubri	cs and :	field tria	ls if app	licable.	

		Course	e: Con	iputer	Arch	itectu	re and	l Oper	ating S	bys-	L	Т	Р	C	redit
em LA Course		·IIFI	N0621	1							-	-	2		1
					Progr	ammi	ng C	Progr	ammin	σ and	LIN	IIX sl	nell (	omms	nds
Course				IIDL	IIUgi	a111111	ng, c	TTUST	a	g anu				.0111116	inus
				on ex	perien	ice of	Proces	sor le	vel desi	ign of	com	onen	ts on	kits a	nd pro
									nd testi		1				1
							se of S	ystem	calls a	nd den	nonst	ration	of C	S featu	ares fo
nemor				IPC p	robler	ns.									
Course									Dat				0		
									PGA an			he pe	rforn	nance	
									s and w g using			7			
									g using INUX F						
	e Lear				abing	500 00	mpner	101 11		105141		5.			
CO		0			f the o	course	the st	udent	will			Blo	om's		
	able		•							Ι	Level		Des	scriptor	•
CO1	I +			ssor le rmance		mpone	ent usir	ng FPC	GA and		VI		Cr	eating	
CO2			<u> </u>			mman	ds and	write	scripts		III		Ap	plying	
CO3		lop the m call		odolo	gy for	OS pr	ogram	ming ı	using		III		Ap	plying	
CO4				ammes	using	gcc c	ompile	er for L	LINUX		III		Δn	plying	
	Prog	rammi	ng								111		лp	prynig	
CO-PC		rammi <b>ping:</b>	ng										<i>1</i> <b>i</b> p	prying	
	) Map	ping:		PO	PO	PO	PO	PO	PO	PO					PSO
CO-PC	) Map PO	ping: PO	PO	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PC		20	PSO	PSO 2
CO	) Map	ping:		PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO 10					<b>PSO</b> 2 2
	) Map PO	ping: PO 2	PO 3								PC		20	PSO 1	2
CO CO1	) Map PO	ping: PO 2	PO 3		5						PC		20	PSO 1	2
CO CO1 CO2	) Map PO	ping: PO 2	<b>PO</b> 3 3		5						PC		20	PSO 1	2
CO CO1 CO2 CO3 CO4 Assess	PO 1 ments er Asse	PO 2 2 : :	<b>PO</b> 3 3 3 3	4	<b>5</b> 2	6	7				PC		20	PSO 1	2
CO CO1 CO2 CO3 CO4	PO 1 ments er Asse	PO 2 2 : essmerent of l	PO 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	<b>5</b> 2	6	7			10	PC 11		20	PSO 1	2
CO CO1 CO2 CO3 CO4 Assess	PO 1 ments er Asse	PO 2 2 : essmer ent of l	PO 3 3 3 3 nt: [n Sem ssessm	4	<b>5</b> 2	6	7			10 	PC 11		20	PSO 1	2
CO CO1 CO2 CO3 CO4 Assess Dne co SE is t	PO 1 ments er Asse mpone	PO 2 2 : essmer ent of l As	PO 3 3 3 3 nt: In Sem ISE	4	5 2 Evalua	6 ntion (1	[SE)	8		10 	PC 11		PO 12	<b>PSO</b> 1 2	2 2
CO CO2 CO3 CO4 Assessi Feache One co	PO 1 ments er Asse mpone	PO 2 2 : essmer ent of I As	PO 3 3 3 3 nt: In Sem ISE	4	5 2 Evalua	6 ntion (1	[SE)	8	9	10 	PC 11		PO 12	<b>PSO</b> 1 2	2 2
CO CO2 CO3 CO4 Assessi Feache Dne co SE is t ernal c Course	PO 1 ments er Asse mpone	ping: PO 2 2 : essmer ent of l As on prace: ents:	PO 3 3 3 nt: In Sem Ssessm ISE ctical p	4 nester ] nent	5 2 Evalua	6 Ation (1	ISE)	8 ignme	9	10 Ma 50 esentat	PC 11 rks 0 tion/ 0	Group	PO 12	PSO 1 2 cussior	2 2
CO CO2 CO3 CO4 Assessi Feache Dne co SE is t ernal c Course Minimu	PO 1 ments er Asse mpone oased coral etce e Cont um of	PO 2 2 : ent of 1 As on prace. ents: 4 expe	PO 3 3 3 mt: In Sem ISE ctical p	4 nester ] nent perform	5 2 Evalua med/ Q	6 ation (1 Quiz/La	ISE)	8 ignme	9 nts / Pro	10 Ma 50 esentat	PC 11 rks 0 tion/ 0	Group	PO 12	PSO 1 2 cussior	2 2
CO CO2 CO3 CO4 Assess Feache One co SE is t ernal co Course Minimi	PO 1 1 ments er Asse mpone oased o oral etce e Cont um of archite um of	ping: PO 2 2 : essmer ent of 1 As on prace cure a Exper	PO 3 3 3 in Sem ssessm ISE ctical p eriment	4 nester 1 nent perform ts to b perating on L1	5 2 Evalua med/ Q g Syste NUX	6 ation (I Quiz/La ducted em ( U	ISE) ab Ass	8 ignme ogram 601) U	9 nts / Pro	10 Ma 50 esentat sing V nd II	PC 11 rks D tion/ 0	Group	PO 12 Dise	PSO 1 2 cussion subjec	2 2 // In-
CO CO1 CO2 CO3 CO4 Assessi Feache One co SE is t ernal of Course Minimo buter A Minimo System	PO 1 PO 1 ments er Asse mpone based of oral etce e Cont um of archited um 6 ( UEL	ping: PO 2 2 : ents: 4 expecture a Exper N060	PO 3 3 3 mt: In Sem ssessm ISE ctical p eriment and Op iment 1)unit	4 nester 1 nent perform nts to b perating on LI III to V	5 2 Evalua med/ Q pe cono g Syste NUX VI	6 ation (I Quiz/La ducted em ( U OS ba	ISE) ab Ass l on Pr JELN0 ased o	8 ignme ogram 601) U n subj	9 nts / Pro	10 Ma 50 esentat sing V nd II mputer	PC 11 rks 0 tion/ 0 THDL r Arc	Group base	PO 12 Disc o Disc od on aure a	PSO 1 2 cussion subjec	2 2 // In-
CO CO1 CO2 CO3 CO4 Assessi Feache One co SE is t ernal of Course Minimo buter A Minimo System	PO 1 PO 1 ments er Asse mpone based coral etce e Cont um of architecoum 6 a( UEL shell co	PO 2 2 : ent of 1 As on praces: 4 expecture a Exper N0601 pommar	PO 3 3 3 mt: In Sem ssessm ISE ctical p ctical p iment 1)unit nd, Scr	4 nester 1 nent perform nts to b perating on LI III to V	5 2 Evalua med/ Q pe cono g Syste NUX VI	6 ation (I Quiz/La ducted em ( U OS ba	ISE) ab Ass l on Pr JELN0 ased o	8 ignme ogram 601) U n subj	9 nts / Pro	10 Ma 50 esentat sing V nd II mputer	PC 11 rks 0 tion/ 0 THDL r Arc	Group base	PO 12 Disc o Disc od on aure a	PSO 1 2 cussion subjec	2 2 // In-

i itie o	f the C	Course	e: Mo	del Ba	ased <b>E</b>	esign	LAB						L	T	Р	Credi
Course	e Code	:UEL	N063	2		_							-	-	4	2
Course	e Pre-l	Requi	site: H	Electr	onics	Instru	ıment	tation	, Cont	trol sy	stem	basic	s, Progr	amm	ing l	oasics
Course	e Desc	riptio	n: Th	is cou	rse is	desigi	ned to	unde	rstand	conce	pts in	Deve	elopmen	t met	hodo	logies i
MBD u																
The ind	dustry	stand	ard si	mulati	on to	ols lik	e Ma	tlab a	nd Sir	nulink	will l	be us	ed to m	odel l	basic	system
like mo	otor, go	enerat	ors PI	D con	troller	s etc.	The A	Autom	otive	subsys	stems	will b	e discus	sed a	nd si	mulated
Few me	odels p	previo	usly d	esigne	ed will	be te	sted o	n real	time t	targets	like A	rduir	10			
Course																
1. To u	nderst	and th	e con	cepts o	of Mo	del ba	sed sy	stems	desig	n						
2. To u	nderst	and M	[atlab/	Scila	b prog	ramm	ing A	pplica	ations							
3. To u	nderst	and, d	esign	and m	odel v	variou	s auto	motiv	e cont	rol sys	stems	using	Simulin	k/ Sc	ilab	
4. To d	evelop	test s	trateg	y for 1	nodel	evalu	ation			-		-				
5. To u	nderst	and at	itomo	tive sy	stems	and c	levelo	p moo	dels fo	or the s	ame					
Course	e Lear	ning (	Jutco	mes:												
CO	Afte	r the c	compl	etion	of the	cour	se the	stude	ent sh	ould b	e Bl	oom'	s Cognit	tive		
	able	to	-								le	vel	Descript	tor		
<b>CO1</b>	Illust	rate D	evelo	pmen	t meth	odolo	gies ir	n MBI	D		II		Underst	andin	g	
CO2	Deve	lop m	odels	of sys	tem ir	n desig	gn				III		Applyin	g	_	
<b>CO3</b>	Evalu	late p	erforn	nance	of mo	dels	-				V		Evaluati			
CO4					system		odel d	evelop	oed		IV		Analysi	0		
	I	0			2			1					2	0		
CO-PC	) Man	ning:														
	1	1 8														
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PS	<b>SO</b>	
CO			3	4	5	6	7	8	9	10	11	12	1		2	
CO	1	2	3	4	5				1			1				
	1	2	3	4												
CO CO1 CO2	1	2		4	5								3	3		
<b>CO1</b>		2		4	5								3	3		

#### Teacher Assessment:

ISE is based on Lab assignment/declared test/quiz/seminar/Group Discussions etc. ESE: Assessment based on Lab assignments demonstration oral examination

students should implement the designed problems throughout the semester.

Assessment	Marks	
ISE	25	
ESE (OE)	50	

_

#### **Course Contents:**

Unit 1:- Introduction to model based design:

Work flow of model based design (MBD), Need of MBD, Core concepts of MBD, Development methodologies in MBD: Waterfall, V model, iterative and incremental, Spiral

Unit 2:--- Introduction to MATLAB, Simulink and SIMSCAPE tool boxes.

An overview of Matlab, Numeric, cell and structure array, Functions and files, Programming with matlab

Creating and simulating model, Modelling programming construct, modelling discrete system, Modelling continues system, Solver selection, developing model hierarchy, modelling conditionally executing algorithms, combining models into diagrams, creating library.

ased Design for a small system - Motor Model, Generator Model, Controller Model,	-
g using state flow	
Explore the system response using different control methods. Tune the system, Ex-	
tem limitations, understand and refine models, Generating and Applying a PID Con-	-
Simulink	
Study of modelling and simulation of the automotive systems	-
Real time simulations on a Simple target (like Arduino)	-
ks:	
Ianaging Model based design, Roger Aarensrtup, MathwoksInc	
Using Simulink and Stateflow in Automotive Applications, MathwoksInc	
ces:	
d K Jurgen, "Automotive Electronics Handbook", 2nd Edition, McGraw-Hill, 1999.	
D Halderman, "Automotive Electricity and Electronics", PHI Publication 2005.	
Husain, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003.	
s control CD Johnson	
e Measurable students Learning Outcomes:	
nts should be able understand concepts of Model based design.	
ts should be able to simulate motor generator models use in automotive industry	
its should be able to develop models atleast 2 models using state flow	
its should be able evaluate performance of models	
nts should be able test models	
nts should be able simulate models on real time target hardware platform	
<ul> <li>htroduction to Matlab for Engineers, William J Palm, Mc Graw Hill</li> <li>Jsing Simulink and Stateflow in Automotive Applications, MathwoksInc</li> <li>ces:</li> <li>d K Jurgen, "Automotive Electronics Handbook", 2nd Edition, McGraw-Hill, 1999.</li> <li>D Halderman, "Automotive Electricity and Electronics", PHI Publication 2005.</li> <li>Husain, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003.</li> <li>as control CD Johnson</li> <li>e Measurable students Learning Outcomes:</li> <li>nts should be able understand concepts of Model based design.</li> <li>ts should be able to simulate motor generator models use in automotive industry</li> <li>nts should be able to develop models atleast 2 models using state flow</li> <li>nts should be able evaluate performance of models</li> <li>nts should be able test models</li> </ul>	

Title of the Course: Data Structures and Algorithms LAB	L	Т	Р	Credit
Course Code: UELN0633	-	-	2	1
Course Pre-Requisite:				

Student should have knowledge of Basics in C/C++ Programming, Data types in C/C++.

Course Description: This course gives introduction to data types, algorithms to access different data types, complexity involved in different data type algorithms, different flavours of data types.

## **Course Objectives:**

- 1. To provide the student with a solid foundation in Engineering. Fundamentals & programming required to solve basic Engineering. Problems.
- 2. To introduce the concepts of array, record & pointers.
- 3. To understand the importance of linked lists and its applications.
- 4. To train the students so that they will be prepared to work on multidisciplinary problems.
- 5. To introduce the concepts of non linear data structures & searching techniques.

### **Course Learning Outcomes:**

CO	After the completion of the course the student should be	Bloom	n's Cognitive
	able to	level	Descriptor
CO1	Explain the concepts of basic data structure operations	II	Understanding
CO2	<b>Apply</b> the Algorithms to Add, delete, sort, and search for data structures like Array, linked list, Stack and Queue.	III	Applying
CO3	<b>Evaluate</b> the performance of algorithms for managing the	V	Evaluating
	data structure.		
CO4	Illustrate the concept of trees, graphs and searching tech-	II	Understanding
	niques.		

## **CO-PO Mapping:**

СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO
CO1	2													
CO2	3												1	
<b>CO3</b>				2									2	
<b>CO4</b>	2													

#### Assessments :

#### **Teacher Assessment:**

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% Weightage respectively.

Assessment	Marks
ISE	50
ESE	50

ISE is based on practicals performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on Practical and oral examination

## **Course Contents:**

Minimum 10 Experiments of Data Structures on Arrays, Linked Lists, Trees and Records.

# Textbooks:

1.Seymour Lipschautz – 'Data structures' - Schaum's outlines - Tata McGraw Hill

2.ISRD group - 'Data structure using C '-- Tata McGraw Hill Reference Books

## **References:**

1.Langsam, Augenstein, Tenenbaun - 'Data structure using C & C++ ' - PHI

2.Mark Allen Weiss- 'Data structure & algorithm analysis in C'- 2nd edition –Pearson Education (LPE)

3.M.T. Goodrich, R. Tamassia, D. Mount- Data Structures & Algorithms in C++- Wiley Publication

4.A.N. Kamthane-" Introduction to Data structures in C"- Pearson Education (LPE)

5.Data structure - A programming Approach with C- D.S Kushawaha, A.K.Misra-PHI Publication.

6.Data structures - A pseudocode Approach with C- R.F.Gilberg, b.a.forouzan-Cengage Learning.

# Experiment wise Measurable Students Learning Outcomes:

1. Student would be able to explain what is the structure of data type and complexity involved in it.

2. Student would be able to explain the structure of array, records and pointers and memory allocation of these structures.

3. Student would be able to explain the structure of linked list its advantages and would able to write algorithms for it.

Title of the Course: Digital Signal Processing LAB	L	Т	Р	Credit
Course Code: UELN0634	-	-	2	1
Course Pre-Requisite: Knowledge of Derivative, Integration, Matrices and L	aplace	trans	form.	

**Course Description:** The course studies dynamic systems encountered in a variety of instrumentation and Mechatronics systems, the modelling of such systems and the response of these systems to a disturbance. In addition, the control of dynamic systems using feedback and the design of control systems using different design techniques will be studied.

#### **Course Objectives:**

Objectives of this course are:

- 1. To study the fundamental concepts of Signal Processing and Code Composer Studio.
- 2. To study the concept Fast Fourier Transform
- 3. To study and Programming with DSP Processors
- 4. To Design Digital Filters

## **Course Learning Outcomes:**

CO	After the completion of the course the student should be	Bloom's Cognitive		
	able to	level	Descriptor	
CO1	Analysis of different Types of Discrete Time Signals	IV	Analyzing	
CO2	Determine Fast Fourier Transform	V	Evaluating	
CO3	Design of Digital Filters	VI	Creating	

### **CO-PO Mapping:**

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2	3												
CO2		2												
<b>CO3</b>	1	2	2										2	

#### Assessments :

#### **Teacher Assessment:**

One component of In Semester Evaluation (ISE) and one End Semester Examination (ESE) having 50%, and 50% weights respectively.

Assessment	Marks
ISE	50
ESE(POE)	50

ISE is based on practical performed/ Quiz/ Mini-Project assigned/ Presentation/ Group Discussion/ Internal oral etc.

ESE: Assessment is based on oral examination

#### **Course Contents:**

Experiment No. 1: Introduction to Code Composer Studio-I.	2Hrs.
Experiment No. 2: Introduction to Code Composer Studio-II.	2Hrs.
<b>Experiment No. 3:</b> Introduction: Signal types, DSP objectives, DSP applications.	2Hrs.
Experiment No. 4: Discrete Fourier Transform, Circular convolution, and filtering via the	2Hrs.
DFT.	
<b>Experiment No. 5:</b> Fast Fourier Transform: decimation in time and frequency algorithms.	2Hrs.
Experiment No. 6: Butterworth, Chebyshev and Elliptic Analog and Digital Filters.	2Hrs.
Experiment No. 7: FIR filters design methods.	2Hrs.
Experiment No. 8: Discrete-time filters structures and finite precision effects.	2Hrs.

## **Textbooks:**

- 1. Digital Signal Processing by Alan V. Oppenheim, Ronald W. Schafer, PHI Learning, 2011
- 2. Digital Signal Processing: Principles Algorithms and Applications, by John G. Proakis Pearson Education India, 2001.

## **References:**

- 1. Digital Signal Processing: A Practical Guide for Engineers and Scientists, Steven Smith Elsevier, 2013.
- 2. Digital Signal Processing by Ramesh Babu C. Ramesh Babu Durai, Laxmi Publications, 2005

## **Experiment wise Measurable students Learning Outcomes:**

- 1. The students will be able to analyze different types of Discrete Time Signals.
- 2. The students will be able to determine FFT of different signals.
- 3. The students will be able to Design different Filters.

H.O.D. Department of Electronics Engineering, K.I.T'S College of Engineering, Kolhapur. Dean Academics K.I.T'S College of Engineering, Kolhapur. Director K.I.T'S College of Engineering, Kolhapur.